How to Find : HCF & LCM Tricks ?


Basic Concepts / āĻŽā§ŒāϞāĻŋāĻ• āϧāĻžā§°āĻŖāĻž



  1. LCM (Least Common Multiple) (āĻ¸ā§°ā§āĻŦāύāĻŋāĻŽā§āύ āϏāĻžāϧāĻžā§°āĻŖ āϗ⧁āĻŖāĻŋāϤāĻ•): The smallest positive number divisible by two or more numbers. āĻ¸ā§°ā§āĻŦāύāĻŋāĻŽā§āύ āϧāύāĻžāĻ¤ā§āĻŽāĻ• āϏāĻ‚āĻ–ā§āϝāĻž āϝāĻŋ āĻĻ⧁āϟāĻž āĻŦāĻž āϤāĻžāϤāĻ•ā§ˆ āĻ…āϧāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻžā§°ā§‡ āϏāĻŽā§āĻĒā§‚ā§°ā§āĻŖāĻ­āĻžā§ąā§‡ āĻŦāĻŋāĻ­āĻžāĻœā§āϝāĨ¤

  2. HCF (Highest Common Factor / GCD) (āĻ¸ā§°ā§āĻŦāĻžāϧāĻŋāĻ• āϏāĻžāϧāĻžā§°āĻŖ āϗ⧁āĻŖāύ⧀āϝāĻŧāĻ• / GCD): The greatest common factor of two or more numbers. āĻĻ⧁āϟāĻž āĻŦāĻž āϤāĻžāϤāĻ•ā§ˆ āĻ…āϧāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻžā§° āĻ¸ā§°ā§āĻŦāĻžāϧāĻŋāĻ• āϏāĻžāϧāĻžā§°āĻŖ āϗ⧁āĻŖāύ⧀āϝāĻŧāĻ•āĨ¤ 


Formula:  LCM × HCF = Product of two number


Ex : 12 and 18 



  1. HCF (12,18) = 6, LCM (12,18) = 36

  2. 12×18 = 216, 6×36 = 216 Correct / āϏāĻ āĻŋāĻ•


Best Tricks for LCM / LCM


Trick 1: Prime Factorisation  / āĻŽā§ŒāϞāĻŋāĻ• āϗ⧁āĻŖāύ⧀āϝāĻŧāĻ• āĻ­āĻžāĻ™āύāĻŋ


    Break each number into prime factors, take the highest power of each prime, multiply. āĻĒā§ā§°āϤāĻŋāĻŸā§‹ āϏāĻ‚āĻ–ā§āϝāĻž āĻŽā§ŒāϞāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻžāϤ āĻ­āĻžāĻ™āĻŋ āĻ˛ā§‹ā§ąāĻž, āĻĒā§ā§°āϤāĻŋāĻŸā§‹ āĻŽā§ŒāϞāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻžā§° āĻ¸ā§°ā§āĻŦāĻžāϧāĻŋāĻ• āϘāĻžāϤ āϞ⧈ āϗ⧁āĻŖ āϕ⧰āĻžāĨ¤


Ex: LCM (24,30,40)



  1. 24 = 2³×3, 30 = 2×3×5, 40 = 2³×5

  2. LCM = 2³×3×5=120


Trick 2: Division Method / āĻ­āĻžāĻ— āĻĒāĻĻā§āϧāϤāĻŋ: Divide numbers simultaneously until all become 1, multiply all divisors = LCM. āϏāĻ‚āĻ–ā§āϝāĻžāĻŦā§‹ā§° āĻāϕ⧇āϞāϗ⧇ āĻ­āĻžāĻ— āϕ⧰āĻŋ āĻ¯ā§‹ā§ąāĻž āϝ⧇āϤāĻŋāϝāĻŧāĻžāϞ⧈āϕ⧇ āϏāĻ•āϞ⧋ 1 āύāĻšāϝāĻŧ, āĻļ⧇āώāϤ āϏāĻŦ āĻ­āĻžāĻ—āϕ⧰ āϗ⧁āĻŖāĻĢāϞ = LCMāĨ¤


Trick 3: Observation / Shortcut / āĻĒā§°ā§āϝāĻŦ⧇āĻ•ā§āώāĻŖ:  Multiply the largest number and adjust by smaller numbers’ factors. āĻŦāĻĄāĻŧ āϏāĻ‚āĻ–ā§āϝāĻžāĻŸā§‹āĻ• āϞ⧈ āϗ⧁āĻŖ āϕ⧰āĻŋ āϏ⧰⧁āĻŦā§‹ā§°ā§° āϗ⧁āĻŖāύ⧀āϝāĻŧāĻ• āĻŦāĻžāĻĻ āĻĻāĻŋāϝāĻŧāĻžāĨ¤


     Ex: LCM(24,36,48) → 48×3×1 = 144


Trick 4: Same Remainder Problems / āĻāϕ⧇ āĻ…āĻŦāĻļāĻŋāĻˇā§āϟ āϏāĻŽāĻ¸ā§āϝāĻž: If a number leaves same remainder r when divided by a,b,c → Number = LCM(a,b,c) + r. āϏāĻ‚āĻ–ā§āϝāĻž āϝ⧇āϤāĻŋāϝāĻŧāĻž a,b,c āϞ⧈ āĻ­āĻžāĻ— āĻĻāĻŋāϞ⧇ āĻāϕ⧇ remainder r → Number = LCM(a,b,c) + r


         Ex: 18,20,24 remainder 3 → LCM=360 → Number=360+3=363


Trick 5: Perfect Square LCM / Perfect Square ā§° āĻŦāĻžāĻŦ⧇ LCM:  Make all prime factor powers even to make LCM a perfect square. LCM ā§° āĻŽā§ŒāϞāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻžā§° āϘāĻžāϤāϏāĻŽā§‚āĻšāĻ• āϝ⧋⧰ āϕ⧰āĻŋ āĻĻāĻŋāϝāĻŧāĻž āϝ⧇āύ square āĻšā§ŸāĨ¤


Ex: 16,20,24 → LCM=240 → 3600 (Perfect Square)


Best Tricks for HCF / HCF  ā§° āĻŦāĻžāĻŦ⧇ āĻ¸ā§°ā§āĻŦāĻļā§ā§°ā§‡āĻˇā§āĻ  āĻŸā§ā§°āĻŋāĻ•


Trick 1: Prime Factorisation / āĻŽā§ŒāϞāĻŋāĻ• āϗ⧁āĻŖāύ⧀āϝāĻŧāĻ• āĻ­āĻžāĻ™āύāĻŋ:  Break each number into prime factors, take lowest power of common primes, multiply. āĻĒā§ā§°āϤāĻŋāĻŸā§‹ āϏāĻ‚āĻ–ā§āϝāĻžā§° āĻŽā§ŒāϞāĻŋāĻ• āϗ⧁āĻŖāύ⧀āϝāĻŧāĻ•āϤ āĻ­āĻžāĻ™āĻŋ āĻ˛ā§‹ā§ąāĻž, āϏāĻžāϧāĻžā§°āĻŖ āĻŽā§ŒāϞāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻžā§° āϏāĻ°ā§āĻŦāύāĻŋāĻŽā§āύ āϘāĻžāϤ āϞ⧈ āϗ⧁āĻŖ āϕ⧰āĻžāĨ¤


        Ex: HCF(24,36)


            24 = 2³×3, 36 = 2²×3² → HCF = 2²×3 = 12


Trick 2: Euclidean Algorithm / āχāωāĻ•ā§āϞāĻŋāĻĄ āĻāϞāĻ—ā§°āĻŋāĻĻāĻŽ:  Fast for large numbers: Divide large by small → remainder → repeat until remainder 0. āĻŦāĻĄāĻŧ āϏāĻ‚āĻ–ā§āϝāĻž āĻ­āĻžāĻ—ā§°āĻĢāϞ āϏ⧰⧁ āϏāĻ‚āĻ–ā§āϝāĻž, āĻĒ⧁āύ⧰ āĻ­āĻžāĻ— āϕ⧰āĻŋ āĻ…āĻŦāĻļāĻŋāĻˇā§āϟ 0 āĻšāϞ⧇ āĻļ⧇āώāĨ¤


Ex: HCF(252,105)


   252 ÷ 105 = 2 remainder 42, 105 ÷ 42 = 2 remainder 21,  42 ÷ 21 = 2 remainder 0 → HCF = 21


Trick 3: Observation Method / āĻĒā§°ā§āϝāĻŦ⧇āĻ•ā§āώāĻŖ āĻĒāĻĻā§āϧāϤāĻŋ:  If numbers are multiples of a common number, pick the largest number dividing all. āϝāĻĻāĻŋ āϏāĻ‚āĻ–ā§āϝāĻžāϏāĻŽā§‚āĻšā§‡ āĻāϕ⧇ āϏ⧰⧁ āϏāĻ‚āĻ–ā§āϝāĻžā§° āϗ⧁āĻŖāĻŋāϤāĻ• āĻšāϝāĻŧ, āϏāĻ•āϞ⧋āϕ⧇ āĻ­āĻžāĻ— āϕ⧰āĻŋāĻŦ āĻĒā§°āĻž āĻ¸ā§°ā§āĻŦāĻžāϧāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž āϞāĻ“āĻ•āĨ¤


Ex: HCF(36,48,60) → divisible by 12 → HCF=12


Combined Tricks (LCM & HCF) / LCM āφ⧰⧁ HCF āĻŽāĻŋāϞāĻŋāϤ āĻŸā§ā§°āĻŋāĻ•


        LCM × HCF = Product of Numbers → Always check


LCM of three numbers (a, b, c)


    First find LCM of a and b, LCM₁ = LCM(a, b)


    Now find LCM of LCM₁ and c, LCM(a, b, c) = LCM(LCM(a, b), c)


     The final result is the LCM of all three numbers


HCF of three numbers (a, b, c)


    First find HCF of a and b, HCF₁ = HCF(a, b)


    Now find HCF of HCF₁ and c, HCF(a, b, c) = HCF(HCF(a, b), c)


    The final result is the HCF of all three numbers, Prime factorisation once → reuse for both


    Ex : Numbers: 12, 18, 24 HCF & LCM = ?










          HCF: HCF (12, 18) = 6, HCF(6, 24) = 6, HCF(12, 18, 24) = 6


          LCM: LCM(12, 18) = 36, LCM(36, 24) = 72, LCM(12, 18, 24) = 72


          Ans: HCF = 6, LCM = 72




 





Basic definitions



  1.  HCF (Highest Common Factor) is the largest number that divides two or more given numbers exactly without leaving any remainder. Example, HCF of (8, 12) = 4

  2.  LCM (Least Common Multiple) is the smallest number that is exactly divisible by all the given numbers. Example, LCM of (8, 12) = 24.


Methods to find HCF


(A) Prime Factorization Method



  1. Write the prime factors of each number.

  2. Multiply the common prime factors with lowest powers.


Ex: Find HCF of 36 and 60
       36 = 2² × 3²
       60 = 2² × 3 × 5
       Common factors = 2² × 3 = 12
       HCF = 12


(B) Division Method (Euclid’s method)



  1. Divide the larger number by the smaller number.

  2. Divide the divisor by the remainder.

  3. Continue until remainder = 0.

  4. The last divisor = HCF.


Ex: Find HCF of 60 and 36
    60 ÷ 36 → remainder 24
    36 ÷ 24 → remainder 12
    24 ÷ 12 → remainder 0
    HCF = 12


(C) Shortcut Trick (for 2 or 3 numbers)



  1. If numbers are multiples, smaller = HCF. Ex: HCF of 12, 24, 36 = 12

  2. If numbers are consecutive, HCF = 1. Ex: HCF of 8, 9, 10 = 1


Methods to find LCM


(A) Prime Factorization Method



  1. Write the prime factors of each number.

  2. Multiply all prime factors with highest powers.


Ex: Find LCM of 12 and 18
       12 = 2² × 3
       18 = 2 × 3²
        LCM = 2² × 3² = 36


(B) Division Method (for 2 or more numbers)



  1. Write numbers in a row.

  2. Divide by any prime that divides at least one number.

  3. Continue till all become 1.

  4. Multiply all divisors = LCM


Ex: Find LCM of 12, 18, 24


Write the numbers: 12, 18, 24


Divide by 2 (smallest prime): 12 ÷ 2 = 6, 18 ÷ 2 = 9, 24 ÷ 2 = 12 → New numbers: 6, 9, 12


Divide by 2 again: 6 ÷ 2 = 3, 9 ÷ 2 = 9 (not divisible), 12 ÷ 2 = 6 → 3, 9, 6


Divide by 2 again: 3 ÷ 2 = 3, 9 ÷ 2 = 9, 6 ÷ 2 = 3 → 3, 9, 3


Divide by 3: 3 ÷ 3 = 1, 9 ÷ 3 = 3, 3 ÷ 3 = 1 → 1, 3, 1


Divide by 3 again: 1 ÷ 3 = 1, 3 ÷ 3 = 1, 1 ÷ 3 = 1 → 1, 1, 1 (Stop)


Multiply all divisors used: 2 × 2 × 2 × 3 × 3 = 72


      LCM = 72


(C) Relation Between HCF and LCM


For any two numbers,


HCF × LCM = Product of numbers


Ex: If numbers are 12 and 18, HCF = 6, so LCM = (12 × 18) / 6 = 36


Short Tricks & Memory Tips


HCF & LCM Tricks


One number divides the other:


o    HCF = Smaller number, LCM = Larger number


o    Ex: (4, 8) → HCF = 4, LCM = 8


Co-prime numbers (no common factor except 1):


o    HCF = 1, LCM = Product of numbers


o    Ex: (4, 9) → HCF = 1, LCM = 36


Three consecutive numbers:


o    HCF = 1


o    Ex: (10, 11, 12) → HCF = 1


Three consecutive even numbers:


o    HCF = 2


o    Ex: (12, 14, 16) → HCF = 2


Fractions (a/b, c/d):


o    HCF = HCF of numerators ÷ LCM of denominators


o    LCM = LCM of numerators ÷ HCF of denominators


o    Ex: HCF(2/3, 4/5) = HCF(2,4)/LCM(3,5) = 2/15


Example Mixed Problem


Find HCF and LCM of 16a²bc³, 32abc, 64a³bc²


LCM: Take highest powers = 64a³bc³


HCF: Take lowest powers = 16abc²


HCF = 16abc², LCM = 64a³bc³


Ex: Find HCF of 36 and 60



  • 36 = 2² × 3²

  • 60 = 2² × 3 × 5
    Common = 2² × 3 = 12
    HCF = 12


Ex


LCM & HCF – Memory Points


     First write prime factors of the numbers. Look at the powers (exponents) of common prime numbers.


For HCF


     Choose the LOWEST power of each common prime factor. Do NOT take highest power. Multiply the chosen lowest powers → HCF


For LCM


Choose the HIGHEST power of each prime factor (common or not). Do NOT take lowest power. Multiply the chosen highest powers → LCM


Ex: 12 and 24


12 = 22×31


24 = 23×31


HCF:
Lowest power of 2 = 22   &  3 = 31
HCF = 22×3 = 12


LCM:
Highest power of 2 = 2& 3 = 31
LCM = 23×3 = 24


Memory Trick


HCFLowest power, LCM Highest power