Clock Reasoning : Aptitude Test 1


1. At 7:30, what will be the angle between the hour and minute hands ?


Options: (a) 45°  (b) 60°  (c) 90°  (d) 300°


Soln:


Minute hand at 30 min: 30 × 6° = 180°


Hour hand at 7:30:


·   7 hours → 7 × 30° = 210°


·   Extra 30 min → 0.5° × 30 = 15°


·   Total = 210° + 15° = 225°


Angle = |225° − 180°| = 45°


Ans: (a) 45°



2. What will be the angle between the hour and minute hands at 8:50 ?


Options: (a) 90°  (b) 325°  (c) 35°  (d) Both (b) and (c)


Solution:


Use the formula: θ = ∣60H−11M∣ / 2


Here: H = 8, M = 50


Θ = ∣60×8−11×50∣ / 2


    = ∣480 - 550∣ / 2


     =70 / 2 = 35


·   Small angle = 35°


·   Large angle = 360° - 35° = 325°


Ans: (d) Both (b) and (c)


3. What is the angle between the hour and minute hands at 5:25 ?


Options: (a) 27.5°  (b) 27°  (c) 14.5°  (d) 12.5°


Soln:


Use the same formula: θ = ∣60H-11M∣ / 2


H = 5, M = 25


Θ = ∣60×5 - 11×25∣ / 2


    = ∣300 - 275∣ / 2


    = 25 / 2 = 12.5


Ans: (d) 12.5°


4. Find the angle between the hour and minute hands at 3:12.


Options: (a) 25°  (b) 24°  (c) 12°  (d) None of these


Soln :


Use the formula: θ = ∣60H−11M∣ / 2


Here: H = 3, M = 12


Θ = ∣60×3−11×12∣ / 2


    = ∣180 - 132∣ / 2


    = 48 / 2 = 24


So the angle is 24°.


Shortcut Trick:


When the hour : minute ratio = 1 : 4, → Just multiply the minutes by 2.


Here time = 3:12 (ratio 1:4)


= 12×2=24


Ans: (b) 24°


5. Find the angle between the hour and minute hands at 8:40.


Options: (a) 10°  (b) 22.5°  (c) 20°  (d) 50°


Ans: (c) 20°


Soln :


At 8:40, the hour : minute ratio is 1 : 5.
For ratios 1:5 or 1:6, use this shortcut:


Angle = (Minutes ÷ 2)


40 ÷ 2 = 20∘


So, the angle = 20°


Alternate Formula Method:


Use the standard formula: θ = ∣60H−11M∣ / 2


H = 8
M = 40


Θ = ∣60 × 8−11 × 40∣ / 2


     = ∣480 - 440∣ / 2


     =40 / 2 = 20


Ans: (c) 20°



6. Find the angle between the hour and minute hands at 8:40.


Options: (a) 10°  (b) 22.5°  (c) 20°  (d) 50°


Ans: (c) 20°


Soln :


At 8:40, the hour : minute ratio is 1 : 5.
For ratios 1:5 or 1:6, use this shortcut:


Angle = (Minutes ÷ 2)


40 ÷ 2 = 20∘


So, the angle = 20°


Alternate Formula Method:


Use the standard formula: θ = ∣60H−11M∣ / 2


H = 8
M = 40


Θ = ∣60 × 8−11 × 40∣ / 2


     = ∣480 - 440∣ / 2


     =40 / 2 = 20


Ans: (c) 20°