Squares and Square Roots – Part 1 & 2


Squares and Square Roots


1. Square Numbers


Definition: A natural number n is called a perfect square if = n = m2 for some natural number m. āĻāϟāĻž āĻ¸ā§āĻŦāĻžāĻ­āĻžā§ąāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž n āĻ• āĻŦā§°ā§āĻ—āϏāĻ‚āĻ–ā§āϝāĻž āĻŦā§‹āϞāĻž āĻšāϝāĻŧ āϝāĻĻāĻŋ = n = m2 , āϝ’āϤ m āĻāϟāĻž āĻ¸ā§āĻŦāĻžāĻ­āĻžā§ąāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻžāĨ¤


Examples of Square Numbers : 1² = 1, 2² = 4, 3² = 9, 4² = 16, 5² = 25, 6² = 36, 10² = 100, So, 1, 4, 9, 16, 25, 36, 100… are square numbers. āϏ⧇āϝāĻŧ⧇ 1, 4, 9, 16, 25, 36, 100… āĻāχāĻŦā§‹ā§° āĻŦā§°ā§āĻ—āϏāĻ‚āĻ–ā§āϝāĻžāĨ¤


2. Properties of Square Numbers


(a) Last Digit Rule – Never Square


If a number ends in 2, 3, 7, or 8, it is never a perfect square.āϝāĻĻāĻŋ āϏāĻ‚āĻ–ā§āϝāĻžā§° āĻļ⧇āώ āĻ…āĻ‚āĻ• 2, 3, 7 āĻŦāĻž 8 āĻšāϝāĻŧ, āϤ⧇āĻ¨ā§āϤ⧇ āϏ⧇āχ āϏāĻ‚āĻ–ā§āϝāĻž āϕ⧇āϤāĻŋāϝāĻŧāĻžāĻ“ āĻŦā§°ā§āĻ— āύāĻšāϝāĻŧāĨ¤


(b) Last Digit Rule – May be Square


If a number ends in 0, 1, 4, 5, 6, or 9, it may be a perfect square. āϝāĻĻāĻŋ āϏāĻ‚āĻ–ā§āϝāĻžā§° āĻļ⧇āώ āĻ…āĻ‚āĻ• 0, 1, 4, 5, 6 āĻŦāĻž 9 āĻšāϝāĻŧ, āϤ⧇āĻ¨ā§āϤ⧇ āϏ⧇āχ āϏāĻ‚āĻ–ā§āϝāĻž āĻŦā§°ā§āĻ— āĻš’āĻŦ āĻĒāĻžā§°ā§‡āĨ¤


(c) Even–Odd Rule



  1. Square of an even number is always evenāϝ⧋⧰ āϏāĻ‚āĻ–ā§āϝāĻžā§° āĻŦā§°ā§āĻ— āϏāĻĻāĻžāϝāĻŧ āϝ⧋⧰ āĻšāϝāĻŧāĨ¤

  2. Square of an odd number is always oddāĻŦāĻŋāĻœā§‹ā§° āϏāĻ‚āĻ–ā§āϝāĻžā§° āĻŦā§°ā§āĻ— āϏāĻĻāĻžāϝāĻŧ āĻŦāĻŋāĻœā§‹ā§° āĻšāϝāĻŧāĨ¤


Ex: 6² = 36 → Even / āϝ⧋⧰, 7² = 49 → Odd / āĻŦāĻŋāĻœā§‹ā§°


(d) Zeros Rule


A perfect square always ends with an even number of zeros. āĻāϟāĻž āĻŦā§°ā§āĻ—āϏāĻ‚āĻ–ā§āϝāĻžā§° āĻļ⧇āώāϤ āϏāĻĻāĻžāϝāĻŧ āĻœā§‹ā§° āϏāĻ‚āĻ–ā§āϝāĻ• āĻļā§‚āĻ¨ā§āϝ (0) āĻĨāĻžāϕ⧇āĨ¤


Important Trick 



  1. Odd number of zeros → Not a perfect square. āĻŦāĻŋāĻœā§‹ā§° āĻļā§‚āĻ¨ā§āϝ āĻĨāĻžāĻ•āĻŋāϞ⧇ → āĻŦā§°ā§āĻ— āύāĻšāϝāĻŧāĨ¤

  2. Even number of zeros → May be a perfect square. āϝ⧋⧰ āĻļā§‚āĻ¨ā§āϝ āĻĨāĻžāĻ•āĻŋāϞ⧇ → āĻŦā§°ā§āĻ— āĻš’āĻŦ āĻĒāĻžā§°ā§‡āĨ¤


Ex: 10² = 100 , 100² = 10000, 1000 But 1000 has three zeros not a perfact square.


Revision Points



  1. Square number = number of the form āĻŦā§°ā§āĻ—āϏāĻ‚āĻ–ā§āϝāĻž = āφāĻ•āĻžā§°ā§° āϏāĻ‚āĻ–ā§āϝāĻžāĨ¤

  2. Ending in 2, 3, 7, 8 → Never a square. āĻļ⧇āώ āĻ…āĻ‚āĻ• 2, 3, 7, 8 → āĻŦā§°ā§āĻ— āύāĻšāϝāĻŧāĨ¤

  3. Ending in 0, 1, 4, 5, 6, 9 → May be a square. āĻļ⧇āώ āĻ…āĻ‚āĻ• 0, 1, 4, 5, 6, 9 → āĻŦā§°ā§āĻ— āĻš’āĻŦ āĻĒāĻžā§°ā§‡āĨ¤

  4. Even² = Even, Odd² = Odd. āϝ⧋⧰² = āϝ⧋⧰, āĻŦāĻŋāĻœā§‹ā§°² = āĻŦāĻŋāĻœā§‹ā§°āĨ¤

  5. Perfect squares always have even number of zerosāĻŦā§°ā§āĻ—āϏāĻ‚āĻ–ā§āϝāĻžā§° āĻļ⧇āώāϤ āϏāĻĻāĻžāϝāĻŧ āĻœā§‹ā§° āĻļā§‚āĻ¨ā§āϝ āĻĨāĻžāϕ⧇āĨ¤


3. Interesting Patterns


(A) Sum of first n odd numbers



  1. The sum of first n odd natural numbers is always . āĻĒā§ā§°āĻĨāĻŽ n āϟāĻž āĻŦāĻŋāĻœā§‹ā§° āĻ¸ā§āĻŦāĻžāĻ­āĻžā§ąāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻžā§° āϝ⧋āĻ—āĻĢāϞ āϏāĻĻāĻžāϝāĻŧ āĻšāϝāĻŧāĨ¤

  2. This means adding odd numbers gives a perfect square. āĻ…ā§°ā§āĻĨāĻžā§Ž āĻŦāĻŋāĻœā§‹ā§° āϏāĻ‚āĻ–ā§āϝāĻž āϝ⧋āĻ— āϕ⧰āĻŋāϞ⧇ āϏāĻĻāĻžāϝāĻŧ āĻŦā§°ā§āĻ—āϏāĻ‚āĻ–ā§āϝāĻž āĻĒā§‹ā§ąāĻž āϝāĻžāϝāĻŧāĨ¤


Ex: 1 = 1², 1 + 3 = 4 = 2², 1 + 3 + 5 = 9 = 3², 1 + 3 + 5 + 7 = 16 = 4²


(B) Numbers between two square numbers



  1. Between  and (n+1)², there are exactly 2n non-square numbers. āφ⧰⧁ (n+1)²ā§° āĻŽāĻžāϜāϤ āϏāĻĻāĻžāϝāĻŧ 2n āϟāĻž āĻŦā§°ā§āĻ— āύāĻšā§‹ā§ąāĻž āϏāĻ‚āĻ–ā§āϝāĻž āĻĨāĻžāϕ⧇āĨ¤

  2. This helps to quickly count numbers between two squares. āχ āĻĻ⧁āϟāĻž āĻŦā§°ā§āĻ—ā§° āĻŽāĻžāϜ⧰ āϏāĻ‚āĻ–ā§āϝāĻž āĻ—āĻŖāύāĻž āϕ⧰āĻžāϤ āϏāĻšāĻžāϝāĻŧ āϕ⧰⧇āĨ¤


Ex: Between 3² = 9 and 4² = 16, n = 3 → non-square numbers = 2n = 6, They are: 10, 11, 12, 13, 14, 15


4. Pythagorean Triplets


Definition :Three numbers (a, b, c) form a Pythagorean triplet if a2+b2 = c2 , āϤāĻŋāύāĻŋāϟāĻž āϏāĻ‚āĻ–ā§āϝāĻž (a, b, c) āĻ• āĻĒāĻžāχāĻĨāĻžāĻ—ā§‹ā§°āĻžāĻ› āĻ¤ā§ā§°āϝāĻŧā§€ āĻŦā§‹āϞāĻž āĻšāϝāĻŧ āϝāĻĻāĻŋ a2+b2 = c2


General Formula: For any integer m > 1, a triplet is (2m,  m2−1,  m2+1). āϝāĻŋāϕ⧋āύ⧋ āĻĒā§‚ā§°ā§āĻŖāϏāĻ‚āĻ–ā§āϝāĻž m > 1 āĻš’āϞ⧇ āĻ¤ā§ā§°āϝāĻŧā§€ āĻš’āĻŦ (2m,  m2−1,  m2+1)


How to find a triplet when one number is given



  1. If the given number is even, write it as 2m. āϝāĻĻāĻŋ āĻĻāĻŋāϝāĻŧāĻž āϏāĻ‚āĻ–ā§āϝāĻž āϝ⧋⧰ āĻšāϝāĻŧ, āϤāĻžāĻ• 2m āϧ⧰āĻžāĨ¤

  2. Find mmā§° āĻŽāĻžāύ āωāϞāĻŋāϝāĻŧāĻžāĻ“āĨ¤

  3. Then numbers are: 2m, m² − 1, m² + 1. āϤāĻžā§° āĻĒāĻŋāĻ›āϤ āϏāĻ‚āĻ–ā§āϝāĻž āĻĒāĻžāĻŦāĻž: 2m, m² − 1, m² + 1

  4. Always check using a2 + b2 = cāĻļ⧇āώāϤ āϝāĻžāϚāĻžāχ āϕ⧰āĻž: a2 + b2 = c


Ex : Find a triplets whose one number is 12


Given one member = 12 
Let, 2m = 12 → m = 6 ,


2nd member m² − 1 = 6² − 1 = 36 - 1 = 35


3rd member m² + 1 = 6² + 1 = 36 + 1 = 37


Triplets is 12, 35, 37


Numbers: 12, 35, 37 
Check: 12² + 35² = 144 + 1225 = 1369 = 37² (Correct)


Exam Notes


• Sum of first n odd numbers = n²
• Between n² and (n+1)² → 2n non-square numbers
• Pythagorean rule: a² + b² = c²
• General form: (2m, m² − 1, m² + 1)
• If one number is even, take it as 2m


• āĻĒā§ā§°āĻĨāĻŽ n āϟāĻž āĻŦāĻŋāĻœā§‹ā§° āϏāĻ‚āĻ–ā§āϝāĻžā§° āϝ⧋āĻ—āĻĢāϞ = n²
n² āφ⧰⧁ (n+1)²ā§° āĻŽāĻžāϜāϤ 2n āϟāĻž āĻŦā§°ā§āĻ— āύāĻšā§‹ā§ąāĻž āϏāĻ‚āĻ–ā§āϝāĻž
• āύāĻŋāϝāĻŧāĻŽ: a² + b² = c²
• āϏāĻžāϧāĻžā§°āĻŖ ā§°ā§‚āĻĒ: (2m, m² − 1, m² + 1)
• āϝāĻĻāĻŋ āϏāĻ‚āĻ–ā§āϝāĻž āϝ⧋⧰ āĻšāϝāĻŧ, āϤāĻžāĻ• 2m āϧ⧰āĻž