Squares and Square Roots â Part 1 & 2
Squares and Square Roots
1. Square Numbers
Definition: A natural number n is called a perfect square if = n = m2 for some natural number m. āĻāĻāĻž āϏā§āĻŦāĻžāĻāĻžā§ąāĻŋāĻ āϏāĻāĻā§āϝāĻž n āĻ āĻŦā§°ā§āĻāϏāĻāĻā§āϝāĻž āĻŦā§āϞāĻž āĻšāϝāĻŧ āϝāĻĻāĻŋ = n = m2 , āϝ’āϤ m āĻāĻāĻž āϏā§āĻŦāĻžāĻāĻžā§ąāĻŋāĻ āϏāĻāĻā§āϝāĻžāĨ¤
Examples of Square Numbers : 1² = 1, 2² = 4, 3² = 9, 4² = 16, 5² = 25, 6² = 36, 10² = 100, So, 1, 4, 9, 16, 25, 36, 100… are square numbers. āϏā§āϝāĻŧā§ 1, 4, 9, 16, 25, 36, 100… āĻāĻāĻŦā§ā§° āĻŦā§°ā§āĻāϏāĻāĻā§āϝāĻžāĨ¤
2. Properties of Square Numbers
(a) Last Digit Rule – Never Square
If a number ends in 2, 3, 7, or 8, it is never a perfect square.āϝāĻĻāĻŋ āϏāĻāĻā§āϝāĻžā§° āĻļā§āώ āĻ āĻāĻ 2, 3, 7 āĻŦāĻž 8 āĻšāϝāĻŧ, āϤā§āύā§āϤ⧠āϏā§āĻ āϏāĻāĻā§āϝāĻž āĻā§āϤāĻŋāϝāĻŧāĻžāĻ āĻŦā§°ā§āĻ āύāĻšāϝāĻŧāĨ¤
(b) Last Digit Rule – May be Square
If a number ends in 0, 1, 4, 5, 6, or 9, it may be a perfect square. āϝāĻĻāĻŋ āϏāĻāĻā§āϝāĻžā§° āĻļā§āώ āĻ āĻāĻ 0, 1, 4, 5, 6 āĻŦāĻž 9 āĻšāϝāĻŧ, āϤā§āύā§āϤ⧠āϏā§āĻ āϏāĻāĻā§āϝāĻž āĻŦā§°ā§āĻ āĻš’āĻŦ āĻĒāĻžā§°ā§āĨ¤
(c) Even–Odd Rule
- Square of an even number is always even. āϝā§ā§° āϏāĻāĻā§āϝāĻžā§° āĻŦā§°ā§āĻ āϏāĻĻāĻžāϝāĻŧ āϝā§ā§° āĻšāϝāĻŧāĨ¤
- Square of an odd number is always odd. āĻŦāĻŋāĻā§ā§° āϏāĻāĻā§āϝāĻžā§° āĻŦā§°ā§āĻ āϏāĻĻāĻžāϝāĻŧ āĻŦāĻŋāĻā§ā§° āĻšāϝāĻŧāĨ¤
Ex: 6² = 36 → Even / āϝā§ā§°, 7² = 49 → Odd / āĻŦāĻŋāĻā§ā§°
(d) Zeros Rule
A perfect square always ends with an even number of zeros. āĻāĻāĻž āĻŦā§°ā§āĻāϏāĻāĻā§āϝāĻžā§° āĻļā§āώāϤ āϏāĻĻāĻžāϝāĻŧ āĻā§ā§° āϏāĻāĻā§āϝāĻ āĻļā§āύā§āϝ (0) āĻĨāĻžāĻā§āĨ¤
Important Trick
- Odd number of zeros → Not a perfect square. āĻŦāĻŋāĻā§ā§° āĻļā§āύā§āϝ āĻĨāĻžāĻāĻŋāϞ⧠→ āĻŦā§°ā§āĻ āύāĻšāϝāĻŧāĨ¤
- Even number of zeros → May be a perfect square. āϝā§ā§° āĻļā§āύā§āϝ āĻĨāĻžāĻāĻŋāϞ⧠→ āĻŦā§°ā§āĻ āĻš’āĻŦ āĻĒāĻžā§°ā§āĨ¤
Ex: 10² = 100 , 100² = 10000, 1000 But 1000 has three zeros not a perfact square.
Revision Points
- Square number = number of the form m². āĻŦā§°ā§āĻāϏāĻāĻā§āϝāĻž = m² āĻāĻāĻžā§°ā§° āϏāĻāĻā§āϝāĻžāĨ¤
- Ending in 2, 3, 7, 8 → Never a square. āĻļā§āώ āĻ āĻāĻ 2, 3, 7, 8 → āĻŦā§°ā§āĻ āύāĻšāϝāĻŧāĨ¤
- Ending in 0, 1, 4, 5, 6, 9 → May be a square. āĻļā§āώ āĻ āĻāĻ 0, 1, 4, 5, 6, 9 → āĻŦā§°ā§āĻ āĻš’āĻŦ āĻĒāĻžā§°ā§āĨ¤
- Even² = Even, Odd² = Odd. āϝā§ā§°² = āϝā§ā§°, āĻŦāĻŋāĻā§ā§°² = āĻŦāĻŋāĻā§ā§°āĨ¤
- Perfect squares always have even number of zeros. āĻŦā§°ā§āĻāϏāĻāĻā§āϝāĻžā§° āĻļā§āώāϤ āϏāĻĻāĻžāϝāĻŧ āĻā§ā§° āĻļā§āύā§āϝ āĻĨāĻžāĻā§āĨ¤
3. Interesting Patterns
(A) Sum of first n odd numbers
- The sum of first n odd natural numbers is always n². āĻĒā§ā§°āĻĨāĻŽ n āĻāĻž āĻŦāĻŋāĻā§ā§° āϏā§āĻŦāĻžāĻāĻžā§ąāĻŋāĻ āϏāĻāĻā§āϝāĻžā§° āϝā§āĻāĻĢāϞ āϏāĻĻāĻžāϝāĻŧ n² āĻšāϝāĻŧāĨ¤
- This means adding odd numbers gives a perfect square. āĻ ā§°ā§āĻĨāĻžā§ āĻŦāĻŋāĻā§ā§° āϏāĻāĻā§āϝāĻž āϝā§āĻ āĻā§°āĻŋāϞ⧠āϏāĻĻāĻžāϝāĻŧ āĻŦā§°ā§āĻāϏāĻāĻā§āϝāĻž āĻĒā§ā§ąāĻž āϝāĻžāϝāĻŧāĨ¤
Ex: 1 = 1², 1 + 3 = 4 = 2², 1 + 3 + 5 = 9 = 3², 1 + 3 + 5 + 7 = 16 = 4²
(B) Numbers between two square numbers
- Between n² and (n+1)², there are exactly 2n non-square numbers. n² āĻā§°ā§ (n+1)²ā§° āĻŽāĻžāĻāϤ āϏāĻĻāĻžāϝāĻŧ 2n āĻāĻž āĻŦā§°ā§āĻ āύāĻšā§ā§ąāĻž āϏāĻāĻā§āϝāĻž āĻĨāĻžāĻā§āĨ¤
- This helps to quickly count numbers between two squares. āĻ āĻĻā§āĻāĻž āĻŦā§°ā§āĻā§° āĻŽāĻžāĻā§° āϏāĻāĻā§āϝāĻž āĻāĻŖāύāĻž āĻā§°āĻžāϤ āϏāĻšāĻžāϝāĻŧ āĻā§°ā§āĨ¤
Ex: Between 3² = 9 and 4² = 16, n = 3 → non-square numbers = 2n = 6, They are: 10, 11, 12, 13, 14, 15
4. Pythagorean Triplets
Definition :Three numbers (a, b, c) form a Pythagorean triplet if a2+b2 = c2 , āϤāĻŋāύāĻŋāĻāĻž āϏāĻāĻā§āϝāĻž (a, b, c) āĻ āĻĒāĻžāĻāĻĨāĻžāĻā§ā§°āĻžāĻ āϤā§ā§°āϝāĻŧā§ āĻŦā§āϞāĻž āĻšāϝāĻŧ āϝāĻĻāĻŋ a2+b2 = c2
General Formula: For any integer m > 1, a triplet is (2m,â âm2−1,â âm2+1). āϝāĻŋāĻā§āύ⧠āĻĒā§ā§°ā§āĻŖāϏāĻāĻā§āϝāĻž m > 1 āĻš’āϞ⧠āϤā§ā§°āϝāĻŧā§ āĻš’āĻŦ (2m,â âm2−1,â âm2+1)
How to find a triplet when one number is given
- If the given number is even, write it as 2m. āϝāĻĻāĻŋ āĻĻāĻŋāϝāĻŧāĻž āϏāĻāĻā§āϝāĻž āϝā§ā§° āĻšāϝāĻŧ, āϤāĻžāĻ 2m āϧ⧰āĻžāĨ¤
- Find m. mā§° āĻŽāĻžāύ āĻāϞāĻŋāϝāĻŧāĻžāĻāĨ¤
- Then numbers are: 2m, m² − 1, m² + 1. āϤāĻžā§° āĻĒāĻŋāĻāϤ āϏāĻāĻā§āϝāĻž āĻĒāĻžāĻŦāĻž: 2m, m² − 1, m² + 1
- Always check using a2 + b2 = c2 āĻļā§āώāϤ āϝāĻžāĻāĻžāĻ āĻā§°āĻž: a2 + b2 = c2
Ex : Find a triplets whose one number is 12
Given one member = 12
Let, 2m = 12 → m = 6 ,
2nd member m² − 1 = 6² − 1 = 36 - 1 = 35
3rd member m² + 1 = 6² + 1 = 36 + 1 = 37
Triplets is 12, 35, 37
Numbers: 12, 35, 37
Check: 12² + 35² = 144 + 1225 = 1369 = 37² (Correct)
Exam Notes
• Sum of first n odd numbers = n²
• Between n² and (n+1)² → 2n non-square numbers
• Pythagorean rule: a² + b² = c²
• General form: (2m, m² − 1, m² + 1)
• If one number is even, take it as 2m
• āĻĒā§ā§°āĻĨāĻŽ n āĻāĻž āĻŦāĻŋāĻā§ā§° āϏāĻāĻā§āϝāĻžā§° āϝā§āĻāĻĢāϞ = n²
• n² āĻā§°ā§ (n+1)²ā§° āĻŽāĻžāĻāϤ 2n āĻāĻž āĻŦā§°ā§āĻ āύāĻšā§ā§ąāĻž āϏāĻāĻā§āϝāĻž
• āύāĻŋāϝāĻŧāĻŽ: a² + b² = c²
• āϏāĻžāϧāĻžā§°āĻŖ ā§°ā§āĻĒ: (2m, m² − 1, m² + 1)
• āϝāĻĻāĻŋ āϏāĻāĻā§āϝāĻž āϝā§ā§° āĻšāϝāĻŧ, āϤāĻžāĻ 2m āϧ⧰āĻž