Squares and Square Roots – Part 3 & 4


Squares and Square Roots – Part 3


5. Square Roots


• Finding the square root is the inverse operation of squaring.
• The symbol of square root is .
• If a2 = b , then b = a.


• āĻŦā§°ā§āĻ—āĻŽā§‚āϞ āωāϞāĻŋāϝāĻŧā§‹ā§ąāĻž āĻŽāĻžāύ⧇ āĻšā§ˆāϛ⧇ āĻŦā§°ā§āĻ— āϕ⧰āĻžā§° āωāĻ˛ā§āĻŸā§‹ āĻĒā§ā§°āĻ•ā§ā§°āĻŋāϝāĻŧāĻžāĨ¤
• āĻŦā§°ā§āĻ—āĻŽā§‚āϞ⧰ āϚāĻŋāύ āĻšā§ˆāϛ⧇ āĨ¤
• āϝāĻĻāĻŋ a2 = b , āϤ⧇āĻ¨ā§āϤ⧇ b = a


Ex:


Since āϝāĻŋāĻšā§‡āϤ⧁ 42 = 16, therefore āϏ⧇āϝāĻŧ⧇ √16 = 4.
• Since āϝāĻŋāĻšā§‡āϤ⧁ 92 , therefore āϏ⧇āϝāĻŧ⧇ 81 = 9


6. Finding Square Root by Prime Factorization


When to use


• This method is useful for perfect square numbers. āĻāχ āĻĒāĻĻā§āϧāϤāĻŋ āϏāĻŽā§āĻĒā§‚ā§°ā§āĻŖ āĻŦā§°ā§āĻ—āϏāĻ‚āĻ–ā§āϝāĻžā§° āĻŦāĻžāĻŦ⧇ āωāĻĒāϝ⧋āĻ—ā§€āĨ¤
• It gives exact square roots. āχ āĻ āĻŋāĻ• āĻŦā§°ā§āĻ—āĻŽā§‚āϞ āωāϞāĻŋāϝāĻŧāĻžāĻŦāϞ⧈ āϏāĻšāĻžāϝāĻŧ āϕ⧰⧇āĨ¤


Steps



  1. Find the prime factors of the number. āϏāĻ‚āĻ–ā§āϝāĻžāĻŸā§‹ā§° āĻŽā§ŒāϞāĻŋāĻ• āϗ⧁āĻŖāĻ• āωāϞāĻŋāϝāĻŧāĻžāĻ“āĨ¤

  2. Make pairs of equal factorsāϏāĻŽāĻžāύ āϗ⧁āĻŖāϕ⧰ āĻœā§‹ā§°āĻž āĻŦāύāĻžāĻ“āĨ¤

  3. Take one factor from each pair. āĻĒā§ā§°āĻ¤ā§āϝ⧇āĻ• āĻœā§‹ā§°āĻžā§° āĻĒā§°āĻž āĻāϟāĻž āϗ⧁āĻŖāĻ• āĻ˛ā§‹ā§ąāĻžāĨ¤

  4. Multiply them to get the square root. āϏ⧇āχāĻŦā§‹ā§° āϗ⧁āĻŖ āϕ⧰āĻŋāϞ⧇ āĻŦā§°ā§āĻ—āĻŽā§‚āϞ āĻĒā§‹ā§ąāĻž āϝāĻžāϝāĻŧāĨ¤


Ex: Find √324


1st : Prime factorization : 324 = 2 × 2 × 3 × 3 × 3 × 3


2nd : Make pairs : (2 × 2), (3 × 3), (3 × 3)


3rd : Take one from each pair : √324 = 2 × 3 × 3


4th : Multiply : √324 = 18


Check : 18² = 324 


Important Notes for Students


• Square root is the reverse of squaring. āĻŦā§°ā§āĻ—āĻŽā§‚āϞ āĻšā§ˆāϛ⧇ āĻŦā§°ā§āĻ— āϕ⧰āĻžā§° āωāĻ˛ā§āĻŸā§‹ āĻĒā§ā§°āĻ•ā§ā§°āĻŋāϝāĻŧāĻžāĨ¤
• Symbol of square root is . āĻŦā§°ā§āĻ—āĻŽā§‚āϞ⧰ āϚāĻŋāύ āĻšā§ˆāϛ⧇ āĨ¤
• Use prime factorization method for perfect squares. āϏāĻŽā§āĻĒā§‚ā§°ā§āĻŖ āĻŦā§°ā§āĻ—āϏāĻ‚āĻ–ā§āϝāĻžā§° āĻŦāĻžāĻŦ⧇ āĻŽā§ŒāϞāĻŋāĻ• āϗ⧁āĻŖāĻ• āĻĒāĻĻā§āϧāϤāĻŋ āĻŦā§āĻ¯ā§ąāĻšāĻžā§° āϕ⧰āĻž āĻšāϝāĻŧāĨ¤
• Always make pairs of equal factors. āϏāĻĻāĻžāϝāĻŧ āϏāĻŽāĻžāύ āϗ⧁āĻŖāϕ⧰ āĻœā§‹ā§°āĻž āĻŦāύāĻžāĻŦ āϞāĻžāϗ⧇āĨ¤
• If a factor is left unpaired, the number is not a perfect square. āϝāĻĻāĻŋ āϕ⧋āύ⧋ āϗ⧁āĻŖāĻ• āĻāĻ•āϞāĻ—āĻž āύāĻžāĻĒāĻžāϝāĻŧ, āϤ⧇āĻ¨ā§āϤ⧇ āϏāĻ‚āĻ–ā§āϝāĻž āϏāĻŽā§āĻĒā§‚ā§°ā§āĻŖ āĻŦā§°ā§āĻ— āύāĻšāϝāĻŧāĨ¤


7. Finding Square Root by Long Division Method


When to use this method


• This method is useful for large numbers. āĻāχ āĻĒāĻĻā§āϧāϤāĻŋ āĻĄāĻžāϙ⧰ āϏāĻ‚āĻ–ā§āϝāĻžā§° āĻŦāĻžāĻŦ⧇ āωāĻĒāϝ⧋āĻ—ā§€āĨ¤
• It is also useful for decimal numbers. āχ āĻĻāĻļāĻŽāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻžā§° āĻŦā§°ā§āĻ—āĻŽā§‚āϞ āωāϞāĻŋāϝāĻŧāĻžāĻŦāϞ⧈āĻ“ āϏāĻšāĻžāϝāĻŧ āϕ⧰⧇āĨ¤
• It helps to find accurate square roots. āχ āĻ āĻŋāĻ• āĻŦā§°ā§āĻ—āĻŽā§‚āϞ āωāϞāĻŋāϝāĻŧāĻžāĻŦāϞ⧈ āĻŦā§āĻ¯ā§ąāĻšāĻžā§° āϕ⧰āĻž āĻšāϝāĻŧāĨ¤


Steps


1st: Make pairs


• Group the digits of the number into pairs from right to left. • āϏāĻ‚āĻ–ā§āϝāĻžāĻŸā§‹ā§° āĻ…āĻ‚āĻ•āĻŦā§‹ā§° āϏ⧋āρāĻĢāĻžāϞ⧰ āĻĒā§°āĻž āĻŦāĻžāĻ“āρāĻĢāĻžāϞāϞ⧈ āĻœā§‹ā§°āĻž āϕ⧰āĻŋ āĻ˛ā§‹ā§ąāĻžāĨ¤


2nd : Find first digit of root


• Find the largest number whose square is less than or equal to the first pair. • āĻĒā§ā§°āĻĨāĻŽ āĻœā§‹ā§°āĻžāĻŸā§‹ā§° āĻŦāĻžāĻŦ⧇ āĻāύ⧇ āĻāϟāĻž āϏāĻ‚āĻ–ā§āϝāĻž āĻŦāĻŋāϚāĻžā§°āĻž āϝāĻžā§° āĻŦā§°ā§āĻ— āϏ⧇āχ āĻœā§‹ā§°āĻžā§° āϏāĻŽāĻžāύ āĻŦāĻž āϏ⧰⧁āĨ¤


3rd : Subtract


• Subtract the square from the first pair.• āϏ⧇āχ āĻŦā§°ā§āĻ—āĻŸā§‹āĻ• āĻĒā§ā§°āĻĨāĻŽ āĻœā§‹ā§°āĻžā§° āĻĒā§°āĻž āĻŦāĻŋāϝāĻŧā§‹āĻ— āϕ⧰āĻžāĨ¤


4th : Bring down next pair


• Bring down the next pair of digits beside the remainder. • āĻĒā§°ā§ąā§°ā§āϤ⧀ āĻ…āĻ‚āϕ⧰ āĻœā§‹ā§°āĻžāĻŸā§‹ āϤāϞāϞ⧈ āύāĻžāĻŽāĻžāχ āφāύāĻžāĨ¤


5th : Make new divisor


• Double the quotient obtained so far. āĻāϤāĻŋāϝāĻŧāĻžāϞ⧈ āĻĒā§‹ā§ąāĻž āĻ­āĻžāĻ—āĻĢāϞ āĻĻ⧁āϗ⧁āĻŖ āϕ⧰āĻžāĨ¤ This becomes the first part of the new divisor. āĻāχāĻŸā§‹ āύāϤ⧁āύ āĻ­āĻžāĻ—āϕ⧰ āĻĒā§ā§°āĻĨāĻŽ āĻ…āĻ‚āĻļ āĻš’āĻŦāĨ¤


6th: Find next digit


• Find a digit which, when added to the divisor and multiplied, gives a number less than or equal to the new dividend. • āĻāύ⧇ āĻāϟāĻž āĻ…āĻ‚āĻ• āĻŦāĻŋāϚāĻžā§°āĻž āϝāĻŋāĻŸā§‹ āύāϤ⧁āύ āĻ­āĻžāĻ—āϕ⧰ āϏ⧈āϤ⧇ āϗ⧁āĻŖ āϕ⧰āĻŋāϞ⧇ āĻ­āĻžāĻ—āĻĢāϞāϤāĻ•ā§ˆ āϏ⧰⧁ āĻŦāĻž āϏāĻŽāĻžāύ āĻšāϝāĻŧāĨ¤


7th : Repeat


• Repeat the same steps until no remainder is left. • āĻāϕ⧇ āĻĒā§ā§°āĻ•ā§ā§°āĻŋāϝāĻŧāĻž āĻļ⧇āώ āύ⧋āĻšā§‹ā§ąāĻž āĻĒā§°ā§āϝāĻ¨ā§āϤ āϕ⧰āĻŋ āĻĨāĻžāĻ•āĻ•āĨ¤


Ex: Find √529


1st : Pair the digits: 5 | 29 • āĻ…āĻ‚āĻ• āĻœā§‹ā§°āĻž āϕ⧰āĻž: 5 | 29


2nd : small square ≤ 5 is 2² = 4, Write 2 in quotient. • 5 āϤāĻ•ā§ˆ āϏ⧰⧁ āĻŦā§°ā§āĻ— = 2² = 4 , āĻ­āĻžāĻ—āĻĢāϞāϤ 2 āϞāĻŋāĻ–āĻžāĨ¤


3rd : Subtract: āĻŦāĻŋāϝāĻŧā§‹āĻ—: 5 − 4 = 1, Bring down āύāĻŽāĻžāχ āφāύāĻž 29 → 129 


4th : Double the quotient āĻ­āĻžāĻ—āĻĢāϞ āĻĻ⧁āϗ⧁āĻŖ : 2 × 2 = 4 , New divisor āύāϤ⧁āύ āĻ­āĻžāĻ—āĻĢāϞ =


5th : Find a digit to complete āĻāύ⧇ āĻ…āĻ‚āĻ• āĻŦāĻŋāϚāĻžā§°āĻž āϝāĻžāϤ⧇ 4_ so that (4_) × _ ≤ 129, Try 3 → 43 × 3 = 129


6th : Write 3 in quotient āĻ­āĻžāĻ—āĻĢāϞāϤ 3 āϞāĻŋāĻ–āĻž → 23
• Subtract āĻŦāĻŋāϝāĻŧā§‹āĻ—: 129 − 129 = 0


Ans: 529 = 23


Important Notes for Students


• Long division method is best for large numbers. āĻĻā§€ā§°ā§āϘ āĻ­āĻžāĻ— āĻĒāĻĻā§āϧāϤāĻŋ āĻĄāĻžāϙ⧰ āϏāĻ‚āĻ–ā§āϝāĻžā§° āĻŦāĻžāĻŦ⧇ āφāϟāĻžāχāϤāĻ•ā§ˆ āĻ­āĻžāϞāĨ¤
• It is also useful for decimal square roots. āχ āĻĻāĻļāĻŽāĻŋāĻ• āĻŦā§°ā§āĻ—āĻŽā§‚āϞ āωāϞāĻŋāϝāĻŧāĻžāĻŦāϞ⧈āĻ“ āĻŦā§āĻ¯ā§ąāĻšāĻžā§° āϕ⧰āĻž āĻšāϝāĻŧāĨ¤
• Always make pairs of digits first. āϏāĻĻāĻžāϝāĻŧ āĻĒā§ā§°āĻĨāĻŽā§‡ āĻ…āĻ‚āĻ• āĻœā§‹ā§°āĻž āϕ⧰āĻŋāĻŦ āϞāĻžāϗ⧇āĨ¤
• Always double the quotient to make the new divisor. āϏāĻĻāĻžāϝāĻŧ āĻ­āĻžāĻ—āĻĢāϞ āĻĻ⧁āϗ⧁āĻŖ āϕ⧰āĻŋ āύāϤ⧁āύ āĻ­āĻžāĻ—āĻ• āĻŦāύāĻžāĻŦ āϞāĻžāϗ⧇
• Practice makes this method easy and fast. āĻ…āύ⧁āĻļā§€āϞāύ⧇ āĻāχ āĻĒāĻĻā§āϧāϤāĻŋ āϏāĻšāϜ āφ⧰⧁ āĻĻā§ā§°ā§āϤ āϕ⧰⧇āĨ¤