Squares and Square Roots â Part 3 & 4
Squares and Square Roots – Part 3
5. Square Roots
• Finding the square root is the inverse operation of squaring.
• The symbol of square root is √.
• If a2 = b , then √b = a.
• āĻŦā§°ā§āĻāĻŽā§āϞ āĻāϞāĻŋāϝāĻŧā§ā§ąāĻž āĻŽāĻžāύ⧠āĻšā§āĻā§ āĻŦā§°ā§āĻ āĻā§°āĻžā§° āĻāϞā§āĻā§ āĻĒā§ā§°āĻā§ā§°āĻŋāϝāĻŧāĻžāĨ¤
• āĻŦā§°ā§āĻāĻŽā§āϞ⧰ āĻāĻŋāύ āĻšā§āĻā§ √āĨ¤
• āϝāĻĻāĻŋ a2 = b , āϤā§āύā§āϤ⧠√b = a
Ex:
• Since āϝāĻŋāĻšā§āϤ⧠42 = 16, therefore āϏā§āϝāĻŧā§ √16 = 4.
• Since āϝāĻŋāĻšā§āϤ⧠92 , therefore āϏā§āϝāĻŧā§ √81 = 9
6. Finding Square Root by Prime Factorization
When to use
• This method is useful for perfect square numbers. āĻāĻ āĻĒāĻĻā§āϧāϤāĻŋ āϏāĻŽā§āĻĒā§ā§°ā§āĻŖ āĻŦā§°ā§āĻāϏāĻāĻā§āϝāĻžā§° āĻŦāĻžāĻŦā§ āĻāĻĒāϝā§āĻā§āĨ¤
• It gives exact square roots. āĻ āĻ āĻŋāĻ āĻŦā§°ā§āĻāĻŽā§āϞ āĻāϞāĻŋāϝāĻŧāĻžāĻŦāϞ⧠āϏāĻšāĻžāϝāĻŧ āĻā§°ā§āĨ¤
Steps
- Find the prime factors of the number. āϏāĻāĻā§āϝāĻžāĻā§ā§° āĻŽā§āϞāĻŋāĻ āĻā§āĻŖāĻ āĻāϞāĻŋāϝāĻŧāĻžāĻāĨ¤
- Make pairs of equal factors. āϏāĻŽāĻžāύ āĻā§āĻŖāĻā§° āĻā§ā§°āĻž āĻŦāύāĻžāĻāĨ¤
- Take one factor from each pair. āĻĒā§ā§°āϤā§āϝā§āĻ āĻā§ā§°āĻžā§° āĻĒā§°āĻž āĻāĻāĻž āĻā§āĻŖāĻ āϞā§ā§ąāĻžāĨ¤
- Multiply them to get the square root. āϏā§āĻāĻŦā§ā§° āĻā§āĻŖ āĻā§°āĻŋāϞ⧠āĻŦā§°ā§āĻāĻŽā§āϞ āĻĒā§ā§ąāĻž āϝāĻžāϝāĻŧāĨ¤
Ex: Find √324
1st : Prime factorization : 324 = 2 × 2 × 3 × 3 × 3 × 3
2nd : Make pairs : (2 × 2), (3 × 3), (3 × 3)
3rd : Take one from each pair : √324 = 2 × 3 × 3
4th : Multiply : √324 = 18
Check : 18² = 324
Important Notes for Students
• Square root is the reverse of squaring. āĻŦā§°ā§āĻāĻŽā§āϞ āĻšā§āĻā§ āĻŦā§°ā§āĻ āĻā§°āĻžā§° āĻāϞā§āĻā§ āĻĒā§ā§°āĻā§ā§°āĻŋāϝāĻŧāĻžāĨ¤
• Symbol of square root is √. āĻŦā§°ā§āĻāĻŽā§āϞ⧰ āĻāĻŋāύ āĻšā§āĻā§ √āĨ¤
• Use prime factorization method for perfect squares. āϏāĻŽā§āĻĒā§ā§°ā§āĻŖ āĻŦā§°ā§āĻāϏāĻāĻā§āϝāĻžā§° āĻŦāĻžāĻŦā§ āĻŽā§āϞāĻŋāĻ āĻā§āĻŖāĻ āĻĒāĻĻā§āϧāϤāĻŋ āĻŦā§āĻ¯ā§ąāĻšāĻžā§° āĻā§°āĻž āĻšāϝāĻŧāĨ¤
• Always make pairs of equal factors. āϏāĻĻāĻžāϝāĻŧ āϏāĻŽāĻžāύ āĻā§āĻŖāĻā§° āĻā§ā§°āĻž āĻŦāύāĻžāĻŦ āϞāĻžāĻā§āĨ¤
• If a factor is left unpaired, the number is not a perfect square. āϝāĻĻāĻŋ āĻā§āύ⧠āĻā§āĻŖāĻ āĻāĻāϞāĻāĻž āύāĻžāĻĒāĻžāϝāĻŧ, āϤā§āύā§āϤ⧠āϏāĻāĻā§āϝāĻž āϏāĻŽā§āĻĒā§ā§°ā§āĻŖ āĻŦā§°ā§āĻ āύāĻšāϝāĻŧāĨ¤
7. Finding Square Root by Long Division Method
When to use this method
• This method is useful for large numbers. āĻāĻ āĻĒāĻĻā§āϧāϤāĻŋ āĻĄāĻžāĻā§° āϏāĻāĻā§āϝāĻžā§° āĻŦāĻžāĻŦā§ āĻāĻĒāϝā§āĻā§āĨ¤
• It is also useful for decimal numbers. āĻ āĻĻāĻļāĻŽāĻŋāĻ āϏāĻāĻā§āϝāĻžā§° āĻŦā§°ā§āĻāĻŽā§āϞ āĻāϞāĻŋāϝāĻŧāĻžāĻŦāϞā§āĻ āϏāĻšāĻžāϝāĻŧ āĻā§°ā§āĨ¤
• It helps to find accurate square roots. āĻ āĻ āĻŋāĻ āĻŦā§°ā§āĻāĻŽā§āϞ āĻāϞāĻŋāϝāĻŧāĻžāĻŦāϞ⧠āĻŦā§āĻ¯ā§ąāĻšāĻžā§° āĻā§°āĻž āĻšāϝāĻŧāĨ¤
Steps
1st: Make pairs
• Group the digits of the number into pairs from right to left. • āϏāĻāĻā§āϝāĻžāĻā§ā§° āĻ āĻāĻāĻŦā§ā§° āϏā§āĻāĻĢāĻžāϞ⧰ āĻĒā§°āĻž āĻŦāĻžāĻāĻāĻĢāĻžāϞāϞ⧠āĻā§ā§°āĻž āĻā§°āĻŋ āϞā§ā§ąāĻžāĨ¤
2nd : Find first digit of root
• Find the largest number whose square is less than or equal to the first pair. • āĻĒā§ā§°āĻĨāĻŽ āĻā§ā§°āĻžāĻā§ā§° āĻŦāĻžāĻŦā§ āĻāύ⧠āĻāĻāĻž āϏāĻāĻā§āϝāĻž āĻŦāĻŋāĻāĻžā§°āĻž āϝāĻžā§° āĻŦā§°ā§āĻ āϏā§āĻ āĻā§ā§°āĻžā§° āϏāĻŽāĻžāύ āĻŦāĻž āϏ⧰ā§āĨ¤
3rd : Subtract
• Subtract the square from the first pair.• āϏā§āĻ āĻŦā§°ā§āĻāĻā§āĻ āĻĒā§ā§°āĻĨāĻŽ āĻā§ā§°āĻžā§° āĻĒā§°āĻž āĻŦāĻŋāϝāĻŧā§āĻ āĻā§°āĻžāĨ¤
4th : Bring down next pair
• Bring down the next pair of digits beside the remainder. • āĻĒā§°ā§ąā§°ā§āϤ⧠āĻ āĻāĻā§° āĻā§ā§°āĻžāĻā§ āϤāϞāϞ⧠āύāĻžāĻŽāĻžāĻ āĻāύāĻžāĨ¤
5th : Make new divisor
• Double the quotient obtained so far. āĻāϤāĻŋāϝāĻŧāĻžāϞ⧠āĻĒā§ā§ąāĻž āĻāĻžāĻāĻĢāϞ āĻĻā§āĻā§āĻŖ āĻā§°āĻžāĨ¤ This becomes the first part of the new divisor. āĻāĻāĻā§ āύāϤā§āύ āĻāĻžāĻāĻā§° āĻĒā§ā§°āĻĨāĻŽ āĻ āĻāĻļ āĻš’āĻŦāĨ¤
6th: Find next digit
• Find a digit which, when added to the divisor and multiplied, gives a number less than or equal to the new dividend. • āĻāύ⧠āĻāĻāĻž āĻ āĻāĻ āĻŦāĻŋāĻāĻžā§°āĻž āϝāĻŋāĻā§ āύāϤā§āύ āĻāĻžāĻāĻā§° āϏā§āϤ⧠āĻā§āĻŖ āĻā§°āĻŋāϞ⧠āĻāĻžāĻāĻĢāϞāϤāĻā§ āϏ⧰⧠āĻŦāĻž āϏāĻŽāĻžāύ āĻšāϝāĻŧāĨ¤
7th : Repeat
• Repeat the same steps until no remainder is left. • āĻāĻā§ āĻĒā§ā§°āĻā§ā§°āĻŋāϝāĻŧāĻž āĻļā§āώ āύā§āĻšā§ā§ąāĻž āĻĒā§°ā§āϝāύā§āϤ āĻā§°āĻŋ āĻĨāĻžāĻāĻāĨ¤
Ex: Find √529
1st : Pair the digits: 5 | 29 • āĻ āĻāĻ āĻā§ā§°āĻž āĻā§°āĻž: 5 | 29
2nd : small square ≤ 5 is 2² = 4, Write 2 in quotient. • 5 āϤāĻā§ āϏ⧰⧠āĻŦā§°ā§āĻ = 2² = 4 , āĻāĻžāĻāĻĢāϞāϤ 2 āϞāĻŋāĻāĻžāĨ¤
3rd : Subtract: āĻŦāĻŋāϝāĻŧā§āĻ: 5 − 4 = 1, Bring down āύāĻŽāĻžāĻ āĻāύāĻž 29 → 129
4th : Double the quotient āĻāĻžāĻāĻĢāϞ āĻĻā§āĻā§āĻŖ : 2 × 2 = 4 , New divisor āύāϤā§āύ āĻāĻžāĻāĻĢāϞ = 4
5th : Find a digit to complete āĻāύ⧠āĻ āĻāĻ āĻŦāĻŋāĻāĻžā§°āĻž āϝāĻžāϤ⧠4_ so that (4_) × _ ≤ 129, Try 3 → 43 × 3 = 129
6th : Write 3 in quotient āĻāĻžāĻāĻĢāϞāϤ 3 āϞāĻŋāĻāĻž → 23
• Subtract āĻŦāĻŋāϝāĻŧā§āĻ: 129 − 129 = 0
Ans: √529 = 23
Important Notes for Students
• Long division method is best for large numbers. āĻĻā§ā§°ā§āĻ āĻāĻžāĻ āĻĒāĻĻā§āϧāϤāĻŋ āĻĄāĻžāĻā§° āϏāĻāĻā§āϝāĻžā§° āĻŦāĻžāĻŦā§ āĻāĻāĻžāĻāϤāĻā§ āĻāĻžāϞāĨ¤
• It is also useful for decimal square roots. āĻ āĻĻāĻļāĻŽāĻŋāĻ āĻŦā§°ā§āĻāĻŽā§āϞ āĻāϞāĻŋāϝāĻŧāĻžāĻŦāϞā§āĻ āĻŦā§āĻ¯ā§ąāĻšāĻžā§° āĻā§°āĻž āĻšāϝāĻŧāĨ¤
• Always make pairs of digits first. āϏāĻĻāĻžāϝāĻŧ āĻĒā§ā§°āĻĨāĻŽā§ āĻ
āĻāĻ āĻā§ā§°āĻž āĻā§°āĻŋāĻŦ āϞāĻžāĻā§āĨ¤
• Always double the quotient to make the new divisor. āϏāĻĻāĻžāϝāĻŧ āĻāĻžāĻāĻĢāϞ āĻĻā§āĻā§āĻŖ āĻā§°āĻŋ āύāϤā§āύ āĻāĻžāĻāĻ āĻŦāύāĻžāĻŦ āϞāĻžāĻā§
• Practice makes this method easy and fast. āĻ
āύā§āĻļā§āϞāύ⧠āĻāĻ āĻĒāĻĻā§āϧāϤāĻŋ āϏāĻšāĻ āĻā§°ā§ āĻĻā§ā§°ā§āϤ āĻā§°ā§āĨ¤