Congruence : āϏāĻŽāĻĻ⧃āĻļā§āϝāϤāĻž


Grade 9 Mathematics : Chapter: Triangles


Congruence : Definition: Two figures are congruent if they have the same shape and the same size. Their corresponding sides and corresponding angles are equal.


āϏāĻŽāĻĻ⧃āĻļā§āϝāϤāĻž : āϏāĻ‚āĻœā§āĻžāĻž: āĻĻ⧁āϟāĻž āφāĻ•āĻžā§° āĻŦāĻž āϚāĻŋāĻ¤ā§ā§° āĻāϕ⧇āχ āφāĻ•ā§ƒāϤāĻŋ āφ⧰⧁ āĻāϕ⧇āχ āφāĻ•āĻžā§° āĻĨāĻžāĻ•āĻŋāϞ⧇ āϤāĻžāĻ• āϏāĻŽāĻĻ⧃āĻļā§āϝ (Congruent) āĻŦ⧁āϞāĻŋāĻ“ āĻ•ā§‹ā§ąāĻž āĻšāϝāĻŧāĨ¤ āϏāĻŽāĻĻ⧃āĻļā§āϝ āϚāĻŋāĻ¤ā§ā§°āϏāĻŽā§‚āĻšā§° āϏāĻŽā§āĻŦāĻ¨ā§āϧāĻŋāϤ āĻŦāĻžāĻšā§ āφ⧰⧁ āϏāĻŽā§āĻŦāĻ¨ā§āϧāĻŋāϤ āϕ⧋āĻŖ āϏāĻŽāĻžāύ āĻšāϝāĻŧāĨ¤


Symbol used: āϚāĻŋāĻšā§āύ: ≃ / ≅


Ex: āωāĻĻāĻžāĻšā§°āĻŖ â–ŗABC ≅ â–ŗDEF



Rule : SSS - SAS - ASA - RHS :  View Paper


Important Points: āϗ⧁⧰⧁āĻ¤ā§āĻŦāĻĒā§‚ā§°ā§āĻŖ āĻ•āĻĨāĻž:



  • Congruent figures overlap exactly when placed one on another. āϏāĻŽāĻĻ⧃āĻļā§āϝ āϚāĻŋāĻ¤ā§ā§° āĻĻ⧁āϟāĻž āĻāϟāĻž āĻ“āĻĒā§°āϤ āĻāϟāĻž ā§°āĻžāĻ–āĻŋāϞ⧇ āϏāĻŽā§āĻĒā§‚ā§°ā§āĻŖ āĻŽāĻŋāϞ āĻ–āĻžāϝāĻŧāĨ¤

  • āφāĻ•ā§ƒāϤāĻŋ āφ⧰⧁ āφāĻ•āĻžā§° āĻĻ⧁āϝāĻŧā§‹ āĻāϕ⧇ āĻšāϝāĻŧāĨ¤ Shape and size are the same.

  • āĻ…ā§ąāĻ¸ā§āĻĨāĻžāύ āĻŦāĻž āĻĻāĻŋāĻļ āϏāϞāύāĻŋ āĻš’āϞ⧇āĻ“ āϏāĻŽāĻĻ⧃āĻļā§āϝāϤāĻž āϏāϞāύāĻŋ āύāĻšāϝāĻŧāĨ¤Position or direction does not matter.



Example: Click Here


Exam Tip: “Same shape and same size” āĻāχ āĻŦāĻžāĻ•ā§āϝāĻŸā§‹ āϞāĻŋāĻ–āĻŋāϞ⧇ āĻĒā§‚ā§°ā§āĻŖ āύāĻŽā§āĻŦā§° āĻĒā§‹ā§ąāĻž āϝāĻžāϝāĻŧāĨ¤


CPCT: Corresponding Parts of Congruent Triangles


Meaning: Once we prove that two triangles are congruent, all their corresponding (matching) sides and corresponding angles are automatically equal.


Use CPCT :


1st: Prove Congruence : First, prove that two triangles are congruent using any congruence rule: SSS, SAS, ASA, RHS


Ex: â–ŗABC â–ŗPQR


2nd: Apply CPCT, Therefore, by CPCT, AB = PQ, A=P, BC=QR, B=Q


CPCT: Corresponding Parts of Congruent Triangles (āϏāĻŽāĻĻ⧃āĻļā§āϝ āĻ¤ā§ā§°āĻŋāϭ⧁āϜ⧰ āϏāĻŽā§āĻŦāĻ¨ā§āϧāĻŋāϤ āĻ…āĻ‚āĻļāϏāĻŽā§‚āĻš)


āĻ…ā§°ā§āĻĨ: āĻāĻŦāĻžā§° āϝāĻĻāĻŋ āĻĻ⧁āϟāĻž āĻ¤ā§ā§°āĻŋāϭ⧁āϜāĻ• āϏāĻŽāĻĻ⧃āĻļā§āϝ (Congruent) āĻŦ⧁āϞāĻŋ āĻĒā§ā§°āĻŽāĻžāĻŖ āϕ⧰āĻž āĻšāϝāĻŧ, āϤ⧇āĻ¨ā§āϤ⧇ āϏāĻŋāĻšāρāϤ⧰ āϏāĻŽā§āĻŦāĻ¨ā§āϧāĻŋāϤ āϏāĻ•āϞ⧋ āĻŦāĻžāĻšā§ āφ⧰⧁ āϏāĻŽā§āĻŦāĻ¨ā§āϧāĻŋāϤ āϏāĻ•āϞ⧋ āϕ⧋āĻŖ āĻ¸ā§āĻŦāϝāĻŧāĻ‚āĻ•ā§ā§°āĻŋāϝāĻŧāĻ­āĻžā§ąā§‡ āϏāĻŽāĻžāύ āĻšāϝāĻŧāĨ¤


Rule : SSS - SAS - ASA - RHS :  View Paper


CPCT āĻŦā§āĻ¯ā§ąāĻšāĻžā§°ā§° āϧāĻžāĻĒ:


1st: āϏāĻŽāĻĻ⧃āĻļā§āϝāϤāĻž āĻĒā§ā§°āĻŽāĻžāĻŖ āϕ⧰āĻž, āĻĒā§ā§°āĻĨāĻŽā§‡ SSS, SAS, ASA āĻŦāĻž RHS āύāĻŋāϝāĻŧāĻŽ āĻŦā§āĻ¯ā§ąāĻšāĻžā§° āϕ⧰āĻŋ āĻĻ⧁āϟāĻž āĻ¤ā§ā§°āĻŋāϭ⧁āϜ āϏāĻŽāĻĻ⧃āĻļā§āϝ āĻŦ⧁āϞāĻŋ āĻĒā§ā§°āĻŽāĻžāĻŖ āϕ⧰āĻŋāĻŦ āϞāĻžāϗ⧇āĨ¤


āωāĻĻāĻžāĻšā§°āĻŖ: â–ŗABC ≅ â–ŗPQR


2nd: CPCT āĻŦā§āĻ¯ā§ąāĻšāĻžā§° āϕ⧰āĻž āϏ⧇āϝāĻŧ⧇, CPCT āĻ…āύ⧁āϏāĻžā§°ā§‡, AB = PQ, ∠A = ∠P, BC = QR, ∠B = ∠Q


Exam Trick: “Once triangles are congruent, their corresponding parts are equal (CPCT).” / “āĻāĻŦāĻžā§° āĻ¤ā§ā§°āĻŋāϭ⧁āϜ āĻĻ⧁āϟāĻž āϏāĻŽāĻĻ⧃āĻļā§āϝ āĻĒā§ā§°āĻŽāĻžāĻŖ āĻš’āϞ⧇, āϏāĻŋāĻšāρāϤ⧰ āϏāĻŽā§āĻŦāĻ¨ā§āϧāĻŋāϤ āĻ…āĻ‚āĻļāϏāĻŽā§‚āĻš āϏāĻŽāĻžāύ āĻšāϝāĻŧ (CPCT)āĨ¤”


Inequalities in Triangles : āĻ¤ā§ā§°āĻŋāϭ⧁āϜāϤ āĻ…āϏāĻŽāϤāĻž (Inequalities)


Theorem: If two sides of a triangle are unequal, then the angle opposite to the longer side is larger (greater). āωāĻĒāĻĒāĻžāĻĻā§āϝ: āϝāĻĻāĻŋ āĻāϟāĻž āĻ¤ā§ā§°āĻŋāϭ⧁āϜ⧰ āĻĻ⧁āϟāĻž āĻŦāĻžāĻšā§ āĻ…āϏāĻŽāĻžāύ āĻšāϝāĻŧ, āϤ⧇āĻ¨ā§āϤ⧇ āĻĻā§€āϘāϞ āĻŦāĻžāĻšā§āĻŸā§‹ā§° āĻŦāĻŋāĻĒā§°ā§€āϤ āϕ⧋āĻŖāĻŸā§‹ āĻĄāĻžāϙ⧰ (āĻŦāĻž āĻ…āϧāĻŋāĻ•) āĻšāϝāĻŧāĨ¤


Inequalities Triangle: Click Here









Exam Trick: āωāĻ¤ā§āϤ⧰ āϞāĻŋāĻ–ā§‹āρāϤ⧇ “longer side → larger opposite angle” āĻāχ āϞāĻžāχāύāĻŸā§‹ āωāĻ˛ā§āϞ⧇āĻ– āϕ⧰āĻŋāϞ⧇ āύāĻŽā§āĻŦā§° āύāĻŋāĻļā§āϚāĻŋāϤāĨ¤










Converse Property of Isosceles Triangle āϏāĻŽāĻĻā§āĻŦāĻŋāĻŦāĻžāĻšā§ āĻ¤ā§ā§°āĻŋāϭ⧁āϜ⧰ āĻŦāĻŋāĻĒā§°ā§€āϤ āĻ§ā§°ā§āĻŽ


TheoremThe sides opposite to equal angles of a triangle are equal. āωāĻĒāĻĒāĻžāĻĻā§āϝ: āĻāϟāĻž āĻ¤ā§ā§°āĻŋāϭ⧁āϜ⧰ āϏāĻŽāĻžāύ āϕ⧋āĻŖāϏāĻŽā§‚āĻšā§° āĻŦāĻŋāĻĒā§°ā§€āϤ āĻŦāĻžāĻšā§āϏāĻŽā§‚āĻš āϏāĻŽāĻžāύ āĻšāϝāĻŧāĨ¤


Statement / āĻŦāĻ•ā§āϤāĻŦā§āϝ: If (āϝāĻĻāĻŋ): ∠B = ∠C, Then (āϤ⧇āĻ¨ā§āϤ⧇): AC = AB

Converse Property : Click Here

Exam Trick -āĻĒā§°ā§€āĻ•ā§āώāĻžā§° āϟāĻŋāĻĒ: Equal angles → opposite sides equal. āϏāĻŽāĻžāύ āϕ⧋āĻŖ → āĻŦāĻŋāĻĒā§°ā§€āϤ āĻŦāĻžāĻšā§ āϏāĻŽāĻž










Isosceles Triangle Property – 1 āϏāĻŽāĻĻā§āĻŦāĻŋāĻŦāĻžāĻšā§ āĻ¤ā§ā§°āĻŋāϭ⧁āϜ⧰ āĻ§ā§°ā§āĻŽ – ā§§ : Click Here


Theorem: The angles opposite to equal sides of an isosceles triangle are equal.


āωāĻĒāĻĒāĻžāĻĻā§āϝ: āĻāϟāĻž āϏāĻŽāĻĻā§āĻŦāĻŋāĻŦāĻžāĻšā§ āĻ¤ā§ā§°āĻŋāϭ⧁āϜ⧰ āϏāĻŽāĻžāύ āĻŦāĻžāĻšā§ā§° āĻŦāĻŋāĻĒā§°ā§€āϤ āϕ⧋āĻŖāϏāĻŽā§‚āĻš āϏāĻŽāĻžāύ āĻšāϝāĻŧāĨ¤


Statement / āĻŦāĻ•ā§āϤāĻŦā§āϝ: If (āϝāĻĻāĻŋ): AB = AC Then (āϤ⧇āĻ¨ā§āϤ⧇): ∠A=∠B

 

Exam Trick / āĻĒā§°ā§€āĻ•ā§āώāĻžā§° āϟāĻŋāĻĒ: Equal sides → opposite angles equal : āϏāĻŽāĻžāύ āĻŦāĻžāĻšā§ → āĻŦāĻŋāĻĒā§°ā§€āϤ āϕ⧋āĻŖ āϏāĻŽāĻžāύ


RHS (Right–Hypotenuse–Side) Congruence Rule : RHS (Right–Hypotenuse–Side) āϏāĻŽāĻĻ⧃āĻļā§āϝāϤāĻž āύāĻŋāϝāĻŧāĻŽ


Applies to: Right-angled triangles only : āĻĒā§ā§°āϝ⧋āĻœā§āϝ : āĻ•ā§‡ā§ąāϞ āϏāĻŽāϕ⧋āĻŖā§€ āĻ¤ā§ā§°āĻŋāϭ⧁āϜ⧰ āĻŦāĻžāĻŦ⧇


Rule: If the hypotenuse and one side of a right-angled triangle are equal to the corresponding hypotenuse and side of another right-angled triangle, then the two triangles are congruent.

RHS (Right–Hypotenuse–Side) : Click here

 

āύāĻŋāϝāĻŧāĻŽ: āϝāĻĻāĻŋ āĻĻ⧁āϟāĻž āϏāĻŽāϕ⧋āĻŖā§€ āĻ¤ā§ā§°āĻŋāϭ⧁āϜ⧰ āĻ…āϧāĻŋāĻ•āĻŦāĻžāĻšā§ (Hypotenuse) āφ⧰⧁ āĻāϟāĻž āϏāĻŽā§āĻŦāĻ¨ā§āϧāĻŋāϤ āĻŦāĻžāĻšā§ āϏāĻŽāĻžāύ āĻšāϝāĻŧ, āϤ⧇āĻ¨ā§āϤ⧇ āĻ¤ā§ā§°āĻŋāϭ⧁āϜ āĻĻ⧁āϟāĻž āϏāĻŽāĻĻ⧃āĻļā§āϝ (Congruent) āĻšāϝāĻŧāĨ¤Exam Tip | āĻĒā§°ā§€āĻ•ā§āώāĻžā§° āϟāĻŋāĻĒ:
āĻĒā§ā§°āĻĨāĻŽā§‡ Right angle = 90° āωāĻ˛ā§āϞ⧇āĻ– āϕ⧰āĻŋāĻŦ, āϤāĻžā§° āĻĒāĻŋāĻ›āϤ Hypotenuse āφ⧰⧁ One Side āϏāĻŽāĻžāύ āϞāĻŋāĻ–āĻŋāĻŦ, āĻļ⧇āώāϤ āϞāĻŋāĻ–āĻŋāĻŦ → ∴ â–ŗABC ≅ â–ŗPQR (by RHS rule)