Congruence : āϏāĻŽāĻĻā§āĻļā§āϝāϤāĻž
Grade 9 Mathematics : Chapter: Triangles
Congruence : Definition: Two figures are congruent if they have the same shape and the same size. Their corresponding sides and corresponding angles are equal.
āϏāĻŽāĻĻā§āĻļā§āϝāϤāĻž : āϏāĻāĻā§āĻāĻž: āĻĻā§āĻāĻž āĻāĻāĻžā§° āĻŦāĻž āĻāĻŋāϤā§ā§° āĻāĻā§āĻ āĻāĻā§āϤāĻŋ āĻā§°ā§ āĻāĻā§āĻ āĻāĻāĻžā§° āĻĨāĻžāĻāĻŋāϞ⧠āϤāĻžāĻ āϏāĻŽāĻĻā§āĻļā§āϝ (Congruent) āĻŦā§āϞāĻŋāĻ āĻā§ā§ąāĻž āĻšāϝāĻŧāĨ¤ āϏāĻŽāĻĻā§āĻļā§āϝ āĻāĻŋāϤā§ā§°āϏāĻŽā§āĻšā§° āϏāĻŽā§āĻŦāύā§āϧāĻŋāϤ āĻŦāĻžāĻšā§ āĻā§°ā§ āϏāĻŽā§āĻŦāύā§āϧāĻŋāϤ āĻā§āĻŖ āϏāĻŽāĻžāύ āĻšāϝāĻŧāĨ¤
Symbol used: āĻāĻŋāĻšā§āύ: â / ≅
Ex: āĻāĻĻāĻžāĻšā§°āĻŖ âŗABC ≅ âŗDEF
Rule : SSS - SAS - ASA - RHS : View Paper
Important Points: āĻā§ā§°ā§āϤā§āĻŦāĻĒā§ā§°ā§āĻŖ āĻāĻĨāĻž:
- Congruent figures overlap exactly when placed one on another. āϏāĻŽāĻĻā§āĻļā§āϝ āĻāĻŋāϤā§ā§° āĻĻā§āĻāĻž āĻāĻāĻž āĻāĻĒā§°āϤ āĻāĻāĻž ā§°āĻžāĻāĻŋāϞ⧠āϏāĻŽā§āĻĒā§ā§°ā§āĻŖ āĻŽāĻŋāϞ āĻāĻžāϝāĻŧāĨ¤
- āĻāĻā§āϤāĻŋ āĻā§°ā§ āĻāĻāĻžā§° āĻĻā§āϝāĻŧā§ āĻāĻā§ āĻšāϝāĻŧāĨ¤ Shape and size are the same.
- āĻ
ā§ąāϏā§āĻĨāĻžāύ āĻŦāĻž āĻĻāĻŋāĻļ āϏāϞāύāĻŋ āĻš’āϞā§āĻ āϏāĻŽāĻĻā§āĻļā§āϝāϤāĻž āϏāϞāύāĻŋ āύāĻšāϝāĻŧāĨ¤Position or direction does not matter.
Example: Click Here
Exam Tip: “Same shape and same size” āĻāĻ āĻŦāĻžāĻā§āϝāĻā§ āϞāĻŋāĻāĻŋāϞ⧠āĻĒā§ā§°ā§āĻŖ āύāĻŽā§āĻŦā§° āĻĒā§ā§ąāĻž āϝāĻžāϝāĻŧāĨ¤
CPCT: Corresponding Parts of Congruent Triangles
Meaning: Once we prove that two triangles are congruent, all their corresponding (matching) sides and corresponding angles are automatically equal.
Use CPCT :
1st: Prove Congruence : First, prove that two triangles are congruent using any congruence rule: SSS, SAS, ASA, RHS
Ex: âŗABC ≅ âŗPQR
2nd: Apply CPCT, Therefore, by CPCT, AB = PQ, ∠A=∠P, BC=QR, ∠B=∠Q
CPCT: Corresponding Parts of Congruent Triangles (āϏāĻŽāĻĻā§āĻļā§āϝ āϤā§ā§°āĻŋāĻā§āĻā§° āϏāĻŽā§āĻŦāύā§āϧāĻŋāϤ āĻ
āĻāĻļāϏāĻŽā§āĻš)
āĻ
ā§°ā§āĻĨ: āĻāĻŦāĻžā§° āϝāĻĻāĻŋ āĻĻā§āĻāĻž āϤā§ā§°āĻŋāĻā§āĻāĻ āϏāĻŽāĻĻā§āĻļā§āϝ (Congruent) āĻŦā§āϞāĻŋ āĻĒā§ā§°āĻŽāĻžāĻŖ āĻā§°āĻž āĻšāϝāĻŧ, āϤā§āύā§āϤ⧠āϏāĻŋāĻšāĻāϤ⧰ āϏāĻŽā§āĻŦāύā§āϧāĻŋāϤ āϏāĻāϞ⧠āĻŦāĻžāĻšā§ āĻā§°ā§ āϏāĻŽā§āĻŦāύā§āϧāĻŋāϤ āϏāĻāϞ⧠āĻā§āĻŖ āϏā§āĻŦāϝāĻŧāĻāĻā§ā§°āĻŋāϝāĻŧāĻāĻžā§ąā§ āϏāĻŽāĻžāύ āĻšāϝāĻŧāĨ¤
Rule : SSS - SAS - ASA - RHS : View Paper
CPCT āĻŦā§āĻ¯ā§ąāĻšāĻžā§°ā§° āϧāĻžāĻĒ:
1st: āϏāĻŽāĻĻā§āĻļā§āϝāϤāĻž āĻĒā§ā§°āĻŽāĻžāĻŖ āĻā§°āĻž, āĻĒā§ā§°āĻĨāĻŽā§ SSS, SAS, ASA āĻŦāĻž RHS āύāĻŋāϝāĻŧāĻŽ āĻŦā§āĻ¯ā§ąāĻšāĻžā§° āĻā§°āĻŋ āĻĻā§āĻāĻž āϤā§ā§°āĻŋāĻā§āĻ āϏāĻŽāĻĻā§āĻļā§āϝ āĻŦā§āϞāĻŋ āĻĒā§ā§°āĻŽāĻžāĻŖ āĻā§°āĻŋāĻŦ āϞāĻžāĻā§āĨ¤
āĻāĻĻāĻžāĻšā§°āĻŖ: âŗABC ≅ âŗPQR
2nd: CPCT āĻŦā§āĻ¯ā§ąāĻšāĻžā§° āĻā§°āĻž āϏā§āϝāĻŧā§, CPCT āĻ
āύā§āϏāĻžā§°ā§, AB = PQ, ∠A = ∠P, BC = QR, ∠B = ∠Q
Exam Trick: “Once triangles are congruent, their corresponding parts are equal (CPCT).” / “āĻāĻŦāĻžā§° āϤā§ā§°āĻŋāĻā§āĻ āĻĻā§āĻāĻž āϏāĻŽāĻĻā§āĻļā§āϝ āĻĒā§ā§°āĻŽāĻžāĻŖ āĻš’āϞā§, āϏāĻŋāĻšāĻāϤ⧰ āϏāĻŽā§āĻŦāύā§āϧāĻŋāϤ āĻ
āĻāĻļāϏāĻŽā§āĻš āϏāĻŽāĻžāύ āĻšāϝāĻŧ (CPCT)āĨ¤”
Inequalities in Triangles : āϤā§ā§°āĻŋāĻā§āĻāϤ āĻ
āϏāĻŽāϤāĻž (Inequalities)
Theorem: If two sides of a triangle are unequal, then the angle opposite to the longer side is larger (greater). āĻāĻĒāĻĒāĻžāĻĻā§āϝ: āϝāĻĻāĻŋ āĻāĻāĻž āϤā§ā§°āĻŋāĻā§āĻā§° āĻĻā§āĻāĻž āĻŦāĻžāĻšā§ āĻ
āϏāĻŽāĻžāύ āĻšāϝāĻŧ, āϤā§āύā§āϤ⧠āĻĻā§āĻāϞ āĻŦāĻžāĻšā§āĻā§ā§° āĻŦāĻŋāĻĒā§°ā§āϤ āĻā§āĻŖāĻā§ āĻĄāĻžāĻā§° (āĻŦāĻž āĻ
āϧāĻŋāĻ) āĻšāϝāĻŧāĨ¤
Inequalities Triangle: Click Here
Exam Trick: āĻāϤā§āϤ⧰ āϞāĻŋāĻā§āĻāϤ⧠“longer side → larger opposite angle” āĻāĻ āϞāĻžāĻāύāĻā§ āĻāϞā§āϞā§āĻ āĻā§°āĻŋāϞ⧠āύāĻŽā§āĻŦā§° āύāĻŋāĻļā§āĻāĻŋāϤāĨ¤
Converse Property of Isosceles Triangle : āϏāĻŽāĻĻā§āĻŦāĻŋāĻŦāĻžāĻšā§ āϤā§ā§°āĻŋāĻā§āĻā§° āĻŦāĻŋāĻĒā§°ā§āϤ āϧ⧰ā§āĻŽ
Theorem: The sides opposite to equal angles of a triangle are equal. āĻāĻĒāĻĒāĻžāĻĻā§āϝ: āĻāĻāĻž āϤā§ā§°āĻŋāĻā§āĻā§° āϏāĻŽāĻžāύ āĻā§āĻŖāϏāĻŽā§āĻšā§° āĻŦāĻŋāĻĒā§°ā§āϤ āĻŦāĻžāĻšā§āϏāĻŽā§āĻš āϏāĻŽāĻžāύ āĻšāϝāĻŧāĨ¤
Statement / āĻŦāĻā§āϤāĻŦā§āϝ: If (āϝāĻĻāĻŋ): ∠B = ∠C, Then (āϤā§āύā§āϤā§): AC = AB
Exam Trick -āĻĒā§°ā§āĻā§āώāĻžā§° āĻāĻŋāĻĒ: Equal angles → opposite sides equal. āϏāĻŽāĻžāύ āĻā§āĻŖ → āĻŦāĻŋāĻĒā§°ā§āϤ āĻŦāĻžāĻšā§ āϏāĻŽāĻž
Isosceles Triangle Property – 1 : āϏāĻŽāĻĻā§āĻŦāĻŋāĻŦāĻžāĻšā§ āϤā§ā§°āĻŋāĻā§āĻā§° āϧ⧰ā§āĻŽ – ā§§ : Click Here
Theorem: The angles opposite to equal sides of an isosceles triangle are equal.
āĻāĻĒāĻĒāĻžāĻĻā§āϝ: āĻāĻāĻž āϏāĻŽāĻĻā§āĻŦāĻŋāĻŦāĻžāĻšā§ āϤā§ā§°āĻŋāĻā§āĻā§° āϏāĻŽāĻžāύ āĻŦāĻžāĻšā§ā§° āĻŦāĻŋāĻĒā§°ā§āϤ āĻā§āĻŖāϏāĻŽā§āĻš āϏāĻŽāĻžāύ āĻšāϝāĻŧāĨ¤
Statement / āĻŦāĻā§āϤāĻŦā§āϝ: If (āϝāĻĻāĻŋ): AB = AC Then (āϤā§āύā§āϤā§): ∠A=∠B
Exam Trick / āĻĒā§°ā§āĻā§āώāĻžā§° āĻāĻŋāĻĒ: Equal sides → opposite angles equal : āϏāĻŽāĻžāύ āĻŦāĻžāĻšā§ → āĻŦāĻŋāĻĒā§°ā§āϤ āĻā§āĻŖ āϏāĻŽāĻžāύ
RHS (Right–Hypotenuse–Side) Congruence Rule : RHS (Right–Hypotenuse–Side) āϏāĻŽāĻĻā§āĻļā§āϝāϤāĻž āύāĻŋāϝāĻŧāĻŽ
Applies to: Right-angled triangles only : āĻĒā§ā§°āϝā§āĻā§āϝ : āĻā§ā§ąāϞ āϏāĻŽāĻā§āĻŖā§ āϤā§ā§°āĻŋāĻā§āĻā§° āĻŦāĻžāĻŦā§
Rule: If the hypotenuse and one side of a right-angled triangle are equal to the corresponding hypotenuse and side of another right-angled triangle, then the two triangles are congruent.
āύāĻŋāϝāĻŧāĻŽ: āϝāĻĻāĻŋ āĻĻā§āĻāĻž āϏāĻŽāĻā§āĻŖā§ āϤā§ā§°āĻŋāĻā§āĻā§° āĻ
āϧāĻŋāĻāĻŦāĻžāĻšā§ (Hypotenuse) āĻā§°ā§ āĻāĻāĻž āϏāĻŽā§āĻŦāύā§āϧāĻŋāϤ āĻŦāĻžāĻšā§ āϏāĻŽāĻžāύ āĻšāϝāĻŧ, āϤā§āύā§āϤ⧠āϤā§ā§°āĻŋāĻā§āĻ āĻĻā§āĻāĻž āϏāĻŽāĻĻā§āĻļā§āϝ (Congruent) āĻšāϝāĻŧāĨ¤Exam Tip | āĻĒā§°ā§āĻā§āώāĻžā§° āĻāĻŋāĻĒ:
āĻĒā§ā§°āĻĨāĻŽā§ Right angle = 90° āĻāϞā§āϞā§āĻ āĻā§°āĻŋāĻŦ, āϤāĻžā§° āĻĒāĻŋāĻāϤ Hypotenuse āĻā§°ā§ One Side āϏāĻŽāĻžāύ āϞāĻŋāĻāĻŋāĻŦ, āĻļā§āώāϤ āϞāĻŋāĻāĻŋāĻŦ → ∴ âŗABC ≅ âŗPQR (by RHS rule)