Number System Notes : Classs 5th to 8th
1. Number Ending with 8 – Not a Perfect Square
If a number has 8 in the unit place, it can never be a perfect square.
Ex: 18, 28, 48, 78 → none are perfect squares.
āϝāĻĻāĻŋ āĻā§āύ⧠āϏāĻāĻā§āϝāĻžā§° āĻāĻāĻ āϏā§āĻĨāĻžāύāϤ ā§Ž āĻĨāĻžāĻā§, āϤā§āύā§āϤ⧠āϏā§āĻāĻā§ āĻā§āϤāĻŋāϝāĻŧāĻžāĻ āĻĒā§ā§°ā§āĻŖ āĻŦā§°ā§āĻ āύāĻšāϝāĻŧāĨ¤
āĻāĻĻāĻžāĻšā§°āĻŖ: ā§§ā§Ž, ā§¨ā§Ž, ā§Ēā§Ž, ā§ā§Ž → āĻāĻžāĻā§āĻ āĻĒā§ā§°ā§āĻŖ āĻŦā§°ā§āĻ āύāĻšāϝāĻŧāĨ¤
2. First Odd Divisible Number (Nine – 9)
Nine (9) is the first odd number that is also a composite number (divisible by 1, 3, 9).
āĻ¨ā§ą (⧝) āĻšā§āĻā§ āĻĒā§ā§°āĻĨāĻŽ āĻŦāĻŋāĻā§āĻĄāĻŧ āϏāĻāĻā§āϝāĻž āϝāĻŋ āϝā§āĻāĻŋāĻ āϏāĻāĻā§āϝāĻžāĻ āĻŦā§āϞāĻŋāĻŦ āĻĒāĻžā§°āĻŋ (ā§§, ā§Š, ⧝-āĻ āĻŦāĻŋāĻāĻžāĻā§āϝ)āĨ¤
3. Natural Numbers (āϏā§āĻŦāĻžāĻāĻžā§ąāĻŋāĻ āϏāĻāĻā§āϝāĻž)
Numbers starting from 1 and used for counting are called natural numbers. Ex: 1, 2, 3, 4, …
ā§§ āĻĒā§°āĻž āĻā§°āĻŽā§āĻ āĻšā§ā§ąāĻž āĻāĻŖāύāĻžā§° āϏāĻāĻā§āϝāĻž āĻā§āĻāĻāĻž āϏā§āĻŦāĻžāĻāĻžā§ąāĻŋāĻ āϏāĻāĻā§āϝāĻžāĨ¤ āĻāĻĻāĻžāĻšā§°āĻŖ: ā§§, ⧍, ā§Š, ā§Ē…
4. Zero (āĻļā§āύā§āϝ)
Zero means nothing. It has many unique mathematical properties.
āĻļā§āύā§āϝ⧰ āĻ ā§°ā§āĻĨ “āĻāĻā§ āύāĻžāĻ’’āĨ¤ āĻāϝāĻŧāĻžā§° āĻŦāĻšā§ āĻŦāĻŋāĻļā§āώ āĻā§āĻŖ āĻāĻā§āĨ¤
5. Whole Numbers (āĻĒā§ā§°ā§āĻŖ āϏāĻāĻā§āϝāĻž)
Whole numbers = 0 + natural numbers. Ex: 0, 1, 2, 3, 4…
āĻļā§āύā§āϝ āĻā§°ā§ āϏā§āĻŦāĻžāĻāĻžā§ąāĻŋāĻ āϏāĻāĻā§āϝāĻž āĻŽāĻŋāϞāĻžāĻ āĻĒā§ā§°ā§āĻŖ āϏāĻāĻā§āϝāĻž āĻšāϝāĻŧāĨ¤ āĻāĻĻāĻžāĻšā§°āĻŖ: ā§Ļ, ā§§, ⧍, ā§Š…
6. Integers (āĻĒā§ā§°ā§āĻŖāĻžāĻā§āĻ)
Integers include:
negative numbers, zero, positive numbers
Ex: -3, -2, -1, 0, 1, 2, 3…
āĻĒā§ā§°ā§āĻŖāĻžāĻā§āĻāϤ āĻĨāĻžāĻā§—
āĻāĻŖāĻžāϤā§āĻŽāĻ āϏāĻāĻā§āϝāĻž, āĻļā§āύā§āϝ, āϧāύāĻžāϤā§āĻŽāĻ āϏāĻāĻā§āϝāĻž āĻāĻĻāĻžāĻšā§°āĻŖ: -ā§Š, -⧍, -ā§§, ā§Ļ, ā§§, ⧍, ā§Š…
7. Even Numbers (āϝā§āĻāĻšāĻž āϏāĻāĻā§āϝāĻž):
Numbers divisible by 2 without remainder. Ex: 2, 4, 6, 8, 10…
āϝāĻŋāϏāĻŦ āϏāĻāĻā§āϝāĻž ⧍-āĻ āĻāĻžāĻ āĻĻāĻŋāϞ⧠āĻ āĻŦāĻļāĻŋāώā§āĻ āύāĻžāĻĨāĻžāĻā§āĨ¤ āĻāĻĻāĻžāĻšā§°āĻŖ: ⧍, ā§Ē, ā§Ŧ, ā§Ž, ā§§ā§Ļ…
8. Odd Numbers (āĻŦāĻŋāĻā§āĻĄāĻŧ āϏāĻāĻā§āϝāĻž):
Numbers that leave remainder 1 when divided by 2. Ex: 1, 3, 5, 7…
āϝāĻŋāϏāĻŦ āϏāĻāĻā§āϝāĻž ⧍-āĻ āĻāĻžāĻ āĻĻāĻŋāϞ⧠⧧ āĻ āĻŦāĻļāĻŋāώā§āĻ āĻĨāĻžāĻā§āĨ¤ āĻāĻĻāĻžāĻšā§°āĻŖ: ā§§, ā§Š, ā§Ģ, ā§…
9. Prime Numbers (āĻŽā§āϞāĻŋāĻ āϏāĻāĻā§āϝāĻž)
Numbers divisible only by 1 and itself. Ex: 2, 3, 5, 7, 11…
āϝāĻŋāϏāĻŦ āϏāĻāĻā§āϝāĻž āĻā§ā§ąāϞ ā§§ āĻā§°ā§ āύāĻŋāĻā§ āĻŦāĻŋāĻāĻžāĻā§āϝāĨ¤ āĻāĻĻāĻžāĻšā§°āĻŖ: ⧍, ā§Š, ā§Ģ, ā§, ā§§ā§§…
10. Composite Numbers (āϝā§āĻāĻŋāĻ ā¤¸ā¤ā¤āĨā¤¯ā¤ž)
Numbers divisible by more than two numbers. Ex: 4, 6, 8, 9, 10…
āϝāĻŋāϏāĻŦ āϏāĻāĻā§āϝāĻž āĻĻā§āĻāĻž āϏāĻāĻā§āϝāĻžā§° āĻ āϧāĻŋāĻāϤ āĻŦāĻŋāĻāĻžāĻā§āϝāĨ¤ āĻāĻĻāĻžāĻšā§°āĻŖ: ā§Ē, ā§Ŧ, ā§Ž, ⧝, ā§§ā§Ļ…
11. Rational Numbers (āĻĒā§°āĻŋāĻŽā§āϝāĻŧ āϏāĻāĻā§āϝāĻž)
Numbers that can be written as p/q, where p and q are integers and q ≠ 0. Ex: 4, –3, 22/7, √25 (=5)
āϝāĻŋāϏāĻŦ āϏāĻāĻā§āϝāĻž p/q ā§°ā§āĻĒā§ āϞāĻŋāĻāĻŋāĻŦ āĻĒā§°āĻž āϝāĻžāϝāĻŧ āĻā§°ā§ q ≠ 0āĨ¤ āĻāĻĻāĻžāĻšā§°āĻŖ: ā§Ē, –ā§Š, ⧍⧍/ā§, √⧍ā§Ģ (=ā§Ģ)