Number System Notes : Classs 5th to 8th


1. Number Ending with 8 – Not a Perfect Square


If a number has 8 in the unit place, it can never be a perfect square.
Ex: 18, 28, 48, 78 → none are perfect squares.


āϝāĻĻāĻŋ āϕ⧋āύ⧋ āϏāĻ‚āĻ–ā§āϝāĻžā§° āĻāĻ•āĻ• āĻ¸ā§āĻĨāĻžāύāϤ ā§Ž āĻĨāĻžāϕ⧇, āϤ⧇āĻ¨ā§āϤ⧇ āϏ⧇āχāĻŸā§‹ āϕ⧇āϤāĻŋāϝāĻŧāĻžāĻ“ āĻĒā§‚ā§°ā§āĻŖ āĻŦā§°ā§āĻ— āύāĻšāϝāĻŧāĨ¤
āωāĻĻāĻžāĻšā§°āĻŖ: ā§§ā§Ž, ā§¨ā§Ž, ā§Ēā§Ž, ā§­ā§Ž → āĻ•āĻžāϕ⧋āĻ“ āĻĒā§‚ā§°ā§āĻŖ āĻŦā§°ā§āĻ— āύāĻšāϝāĻŧāĨ¤


2. First Odd Divisible Number (Nine – 9)


Nine (9) is the first odd number that is also a composite number (divisible by 1, 3, 9).


āĻ¨ā§ą (⧝) āĻšā§ˆāϛ⧇ āĻĒā§ā§°āĻĨāĻŽ āĻŦāĻŋāĻœā§‹āĻĄāĻŧ āϏāĻ‚āĻ–ā§āϝāĻž āϝāĻŋ āϝ⧌āĻ—āĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻžāĻ“ āĻŦ⧁āϞāĻŋāĻŦ āĻĒāĻžā§°āĻŋ (ā§§, ā§Š, ⧝-āĻ āĻŦāĻŋāĻ­āĻžāĻœā§āϝ)āĨ¤


3. Natural Numbers (āĻ¸ā§āĻŦāĻžāĻ­āĻžā§ąāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž)


Numbers starting from 1 and used for counting are called natural numbers. Ex: 1, 2, 3, 4, …


ā§§ āĻĒā§°āĻž āφ⧰āĻŽā§āĻ­ āĻšā§‹ā§ąāĻž āĻ—āĻŖāύāĻžā§° āϏāĻ‚āĻ–ā§āϝāĻž āϕ⧇āχāϟāĻž āĻ¸ā§āĻŦāĻžāĻ­āĻžā§ąāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻžāĨ¤ āωāĻĻāĻžāĻšā§°āĻŖ: ā§§, ⧍, ā§Š, ā§Ē…


4. Zero (āĻļ⧁āĻ¨ā§āϝ)


Zero means nothing. It has many unique mathematical properties.


āĻļā§‚āĻ¨ā§āϝ⧰ āĻ…ā§°ā§āĻĨ “āĻāϕ⧋ āύāĻžāχ’’āĨ¤ āχāϝāĻŧāĻžā§° āĻŦāĻšā§ āĻŦāĻŋāĻļ⧇āώ āϗ⧁āĻŖ āφāϛ⧇āĨ¤


5. Whole Numbers (āĻĒā§‚ā§°ā§āĻŖ āϏāĻ‚āĻ–ā§āϝāĻž)


Whole numbers = 0 + natural numbers. Ex: 0, 1, 2, 3, 4…


āĻļā§‚āĻ¨ā§āϝ āφ⧰⧁ āĻ¸ā§āĻŦāĻžāĻ­āĻžā§ąāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž āĻŽāĻŋāϞāĻžāχ āĻĒā§‚ā§°ā§āĻŖ āϏāĻ‚āĻ–ā§āϝāĻž āĻšāϝāĻŧāĨ¤ āωāĻĻāĻžāĻšā§°āĻŖ: ā§Ļ, ā§§, ⧍, ā§Š…


6. Integers (āĻĒā§‚ā§°ā§āĻŖāĻžāĻ™ā§āĻ•)


Integers include:




  • negative numbers, zero, positive numbers




Ex: -3, -2, -1, 0, 1, 2, 3…


āĻĒā§‚ā§°ā§āĻŖāĻžāĻ™ā§āĻ•āϤ āĻĨāĻžāϕ⧇—




  • āĻ‹āĻŖāĻžāĻ¤ā§āĻŽāĻ• āϏāĻ‚āĻ–ā§āϝāĻž, āĻļā§‚āĻ¨ā§āϝ, āϧāύāĻžāĻ¤ā§āĻŽāĻ• āϏāĻ‚āĻ–ā§āϝāĻž āωāĻĻāĻžāĻšā§°āĻŖ: -ā§Š, -⧍, -ā§§, ā§Ļ, ā§§, ⧍, ā§Š…




7. Even Numbers (āϝ⧁āρāĻšāĻž āϏāĻ‚āĻ–ā§āϝāĻž):


Numbers divisible by 2 without remainder. Ex: 2, 4, 6, 8, 10…


āϝāĻŋāϏāĻŦ āϏāĻ‚āĻ–ā§āϝāĻž ⧍-āĻ āĻ­āĻžāĻ— āĻĻāĻŋāϞ⧇ āĻ…āĻŦāĻļāĻŋāĻˇā§āϟ āύāĻžāĻĨāĻžāϕ⧇āĨ¤ āωāĻĻāĻžāĻšā§°āĻŖ: ⧍, ā§Ē, ā§Ŧ, ā§Ž, ā§§ā§Ļ…


8. Odd Numbers (āĻŦāĻŋāĻœā§‹āĻĄāĻŧ āϏāĻ‚āĻ–ā§āϝāĻž):


Numbers that leave remainder 1 when divided by 2. Ex: 1, 3, 5, 7…


āϝāĻŋāϏāĻŦ āϏāĻ‚āĻ–ā§āϝāĻž ⧍-āĻ āĻ­āĻžāĻ— āĻĻāĻŋāϞ⧇ ā§§ āĻ…āĻŦāĻļāĻŋāĻˇā§āϟ āĻĨāĻžāϕ⧇āĨ¤ āωāĻĻāĻžāĻšā§°āĻŖ: ā§§, ā§Š, ā§Ģ, ā§­…


9. Prime Numbers (āĻŽā§ŒāϞāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž)


Numbers divisible only by 1 and itself. Ex: 2, 3, 5, 7, 11…


āϝāĻŋāϏāĻŦ āϏāĻ‚āĻ–ā§āϝāĻž āĻ•ā§‡ā§ąāϞ ā§§ āφ⧰⧁ āύāĻŋāĻœā§‡ āĻŦāĻŋāĻ­āĻžāĻœā§āϝāĨ¤ āωāĻĻāĻžāĻšā§°āĻŖ: ⧍, ā§Š, ā§Ģ, ā§­, ā§§ā§§…


10. Composite Numbers (āϝ⧌āĻ—āĻŋāĻ• ⤏⤂⤖āĨā¤¯ā¤ž)


Numbers divisible by more than two numbers. Ex: 4, 6, 8, 9, 10…


āϝāĻŋāϏāĻŦ āϏāĻ‚āĻ–ā§āϝāĻž āĻĻ⧁āϟāĻž āϏāĻ‚āĻ–ā§āϝāĻžā§° āĻ…āϧāĻŋāĻ•āϤ āĻŦāĻŋāĻ­āĻžāĻœā§āϝāĨ¤ āωāĻĻāĻžāĻšā§°āĻŖ: ā§Ē, ā§Ŧ, ā§Ž, ⧝, ā§§ā§Ļ…


11. Rational Numbers (āĻĒā§°āĻŋāĻŽā§‡āϝāĻŧ āϏāĻ‚āĻ–ā§āϝāĻž)


Numbers that can be written as p/q, where p and q are integers and q ≠ 0. Ex: 4, –3, 22/7, √25 (=5)


āϝāĻŋāϏāĻŦ āϏāĻ‚āĻ–ā§āϝāĻž p/q ā§°ā§‚āĻĒ⧇ āϞāĻŋāĻ–āĻŋāĻŦ āĻĒā§°āĻž āϝāĻžāϝāĻŧ āφ⧰⧁ q ≠ 0āĨ¤ āωāĻĻāĻžāĻšā§°āĻŖ: ā§Ē, –ā§Š, ⧍⧍/ā§­, √⧍ā§Ģ (=ā§Ģ)