What is Rational Number (āϝā§āĻā§āϤāĻŋāϏāĻāĻāϤ āϏāĻāĻā§āϝāĻž) & Irrational Number (āĻ āϝā§āĻā§āϤāĻŋāϏāĻāĻāϤ āϏāĻāĻā§āϝāĻž) ?
1. Rational Number (āϝā§āĻā§āϤāĻŋāϏāĻāĻāϤ āϏāĻāĻā§āϝāĻž)
Definition: A rational number is a number that can be written in the form p/q, where p and q are integers and q ≠ 0.
āϏāĻāĻā§āĻāĻž: āϝāĻŋ āϏāĻāĻā§āϝāĻž p/q āĻāĻāĻžā§°āϤ āϞāĻŋāĻāĻŋāĻŦ āĻĒā§°āĻž āϝāĻžāϝāĻŧ (p āĻā§°ā§ q āĻĒā§ā§°ā§āĻŖāϏāĻāĻā§āϝāĻž, q ≠ 0), āϤāĻžāĻ āϝā§āĻā§āϤāĻŋāϏāĻāĻāϤ āϏāĻāĻā§āϝāĻž āĻŦā§āϞā§āĨ¤
Ex / āĻāĻĻāĻžāĻšā§°āĻŖ: 1/2 3/45 (= 5/1), 0.25, 0.333… (repeating)
Decimal form: terminating or repeating
āĻĻāĻļāĻŽāĻŋāĻ ā§°ā§āĻĒ: āĻļā§āώ āĻšāϝāĻŧ āĻŦāĻž āĻĒā§āύ⧰āĻžāĻŦā§āϤā§āϤ āĻšāϝāĻŧ
Exam Trick : Rational numbers can be expressed as p/q, while irrational numbers cannot. āϝā§āĻā§āϤāĻŋāϏāĻāĻāϤ āϏāĻāĻā§āϝāĻž p/q āĻāĻāĻžā§°āϤ āϞāĻŋāĻāĻŋāĻŦ āĻĒāĻžā§°āĻŋ, āĻāĻŋāύā§āϤ⧠āĻ āϝā§āĻā§āϤāĻŋāϏāĻāĻāϤ āϏāĻāĻā§āϝāĻž āϞāĻŋāĻāĻŋāĻŦ āύā§ā§ąāĻžā§°āĻŋāĨ¤
2. Irrational Number (āĻ āϝā§āĻā§āϤāĻŋāϏāĻāĻāϤ āϏāĻāĻā§āϝāĻž)
Definition: An irrational number is a number that cannot be written in the form p/q.
āϏāĻāĻā§āĻāĻž: āϝāĻŋ āϏāĻāĻā§āϝāĻž p/q āĻāĻāĻžā§°āϤ āϞāĻŋāĻāĻŋāĻŦ āύā§ā§ąāĻžā§°āĻŋ, āϤāĻžāĻ āĻ āϝā§āĻā§āϤāĻŋāϏāĻāĻāϤ āϏāĻāĻā§āϝāĻž āĻŦā§āϞā§āĨ¤
Ex / āĻāĻĻāĻžāĻšā§°āĻŖ: √2√5, π (āĻĒāĻžāĻ), 0.1010010001… (non-repeating)
Decimal form: non-terminating and non-repeating
āĻĻāĻļāĻŽāĻŋāĻ ā§°ā§āĻĒ: āĻļā§āώ āύāĻšāϝāĻŧ āĻā§°ā§ āĻĒā§āύ⧰āĻžāĻŦā§āϤā§āϤ āύāĻšāϝāĻŧ
Difference / āĻ āϤāĻŋ āϏ⧰⧠āĻĒāĻžā§°ā§āĻĨāĻā§āϝ
- Rational (āϝā§āĻā§āϤāĻŋāϏāĻāĻāϤ): p/q āĻāĻāĻžā§°āϤ āϞāĻŋāĻāĻŋāĻŦ āĻĒāĻžā§°āĻŋ
- Irrational (āĻ āϝā§āĻā§āϤāĻŋāϏāĻāĻāϤ): p/q āĻāĻāĻžā§°āϤ āϞāĻŋāĻāĻŋāĻŦ āύā§ā§ąāĻžā§°āĻŋ
MCQs : Rational & Irrational Numbers (Class 10)
Q1. Which of the following is a rational number ? āϤāϞ⧰ āĻā§āύāĻā§ āϝā§āĻā§āϤāĻŋāϏāĻāĻāϤ āϏāĻāĻā§āϝāĻž ?
a) √2 b) √5 c) 3/7 d) π
Ans: c) 3/7
Explanation : 3/7 is already in p/q form, so it is rational. 3/7 p/q āĻāĻāĻžā§°āϤ āĻāĻā§, āϏā§āϝāĻŧā§āĻšā§ āĻāĻāĻā§ āϝā§āĻā§āϤāĻŋāϏāĻāĻāϤ āϏāĻāĻā§āϝāĻžāĨ¤
Q2. Which of the following is irrational ? āϤāϞ⧰ āĻā§āύāĻā§ āĻ
āϝā§āĻā§āϤāĻŋāϏāĻāĻāϤ āϏāĻāĻā§āϝāĻž ?
a) 0.25 b) 4 c) √3 d) 1/5
Ans: c) √3
Explanation: √3 cannot be written as p/q. √3 p/q āĻāĻāĻžā§°āϤ āϞāĻŋāĻāĻŋāĻŦ āύā§ā§ąāĻžā§°āĻŋāĨ¤
Q3. √9 is, √9 āĻš’āϞ -
a) irrational b) rational c) whole only d) none
Ans: b) rational
Explanation: √9 = 3 = 3/1, so it is rational. √9 = 3 = 3/1, āϏā§āϝāĻŧā§āĻšā§ āϝā§āĻā§āϤāĻŋāϏāĻāĻāϤāĨ¤
Q4. A terminating decimal is always. āĻļā§āώ āĻšā§ā§ąāĻž āĻĻāĻļāĻŽāĻŋāĻ āϏāĻāĻā§āϝāĻž āϏāĻĻāĻžāϝāĻŧ-
a) irrational b) rational c) whole d) natural
Ans: b) rational
Explanation: Every terminating decimal can be written as a fraction. āĻļā§āώ āĻšā§ā§ąāĻž āĻĻāĻļāĻŽāĻŋāĻ āĻāĻā§āύāĻžāĻāĻļ ā§°ā§āĻĒāϤ āϞāĻŋāĻāĻŋāĻŦ āĻĒāĻžā§°āĻŋāĨ¤
Q5. Which decimal is irrational ? āĻā§āύāĻā§ āĻĻāĻļāĻŽāĻŋāĻ āĻ
āϝā§āĻā§āϤāĻŋāϏāĻāĻāϤ ?
a) 0.5 b) 0.333… c) 0.1010010001… d) 0.75
Ans: c) 0.1010010001…
Explanation: It is non-terminating and non-repeating. āĻāĻāĻā§ āĻļā§āώ āύāĻšāϝāĻŧ āĻā§°ā§ āĻĒā§āύ⧰āĻžāĻŦā§āϤā§āϤ āύāĻšāϝāĻŧāĨ¤
Q6. Which of the following cannot be written as p/q ? āϤāϞ⧰ āĻā§āύāĻā§ p/q āĻāĻāĻžā§°āϤ āϞāĻŋāĻāĻŋāĻŦ āύā§ā§ąāĻžā§°āĻŋ ?
a) 7 b) 0.2 c) √7 d) −3
Ans: c) √7
Explanation: √7 is a square root of a non-perfect square. √7 āĻ -āĻĒā§ā§°ā§āĻŖ āĻŦā§°ā§āĻā§° āĻŦā§°ā§āĻāĻŽā§āϞāĨ¤
Q7. 0.666… is , 0.666… āĻš’āϞ -
a) irrational b) rational c) whole d) natural
Ans: b) rational
Explanation: 0.666… is repeating, so it is rational. āĻĒā§āύ⧰āĻžāĻŦā§āϤā§āϤ āĻĻāĻļāĻŽāĻŋāĻ → āϝā§āĻā§āϤāĻŋāϏāĻāĻāϤāĨ¤
Q8. √16 is equal to, √16 ā§° āĻŽāĻžāύ -
a) 2 b) 4 c) irrational d) none
Ans: b) 4
Explanation: √16 = 4, which is an integer and rational. √16 = 4, āĻĒā§ā§°ā§āĻŖāϏāĻāĻā§āϝāĻžāĨ¤
Q9. π (pi) is. π āĻš’āϞ -
a) rational b) irrational c) integer d) whole
Ans: b) irrational
Explanation: π has non-terminating, non-repeating decimal. π ā§° āĻĻāĻļāĻŽāĻŋāĻ āĻļā§āώ āύāĻšāϝāĻŧ āĻā§°ā§ āĻĒā§āύ⧰āĻžāĻŦā§āϤā§āϤ āύāĻšāϝāĻŧāĨ¤
Q10. Sum of a rational and an irrational number is - āĻāĻāĻž āϝā§āĻā§āϤāĻŋāϏāĻāĻāϤ āĻā§°ā§ āĻāĻāĻž āĻ
āϝā§āĻā§āϤāĻŋāϏāĻāĻāϤ āϏāĻāĻā§āϝāĻžā§° āϝā§āĻāĻĢāϞ -
a) rational b) irrational c) whole d) integer
Ans: b) irrational
Explanation: Rational + Irrational = Irrational . āϝā§āĻā§āϤāĻŋāϏāĻāĻāϤ + āĻ āϝā§āĻā§āϤāĻŋāϏāĻāĻāϤ = āĻ āϝā§āĻā§āϤāĻŋāϏāĻāĻāϤ
Exam Tricks
- Terminating / Repeating decimal → Rational
- Non-terminating & Non-repeating → Irrational
- √ of non-perfect square → Irrational
Q. State whether √5â is rational or irrational. √5 āĻāĻŋ āϝā§āĻā§āϤāĻŋāϏāĻāĻāϤ āύ⧠āĻ āϝā§āĻā§āϤāĻŋāϏāĻāĻāϤ āϏāĻāĻā§āϝāĻž ?
Ans: Irrational āĻ āϝā§āĻā§āϤāĻŋāϏāĻāĻāϤ āϏāĻāĻā§āϝāĻž
Explanation:
- A rational number can be written as p/qp/q, where p and q are integers and q ≠ 0. āϝā§āĻā§āϤāĻŋāϏāĻāĻāϤ āϏāĻāĻā§āϝāĻž p/q āĻāĻāĻžā§°āϤ āϞāĻŋāĻāĻŋāĻŦ āĻĒāĻžā§°āĻŋāĨ¤
- √5 cannot be written in the form p/q. √5 p/q āĻāĻāĻžā§°āϤ āϞāĻŋāĻāĻŋāĻŦ āύā§ā§ąāĻžā§°āĻŋāĨ¤
- Therefore, √5 is irrational. āϏā§āϝāĻŧā§āĻšā§ √5 āĻ āϝā§āĻā§āϤāĻŋāϏāĻāĻāϤ āϏāĻāĻā§āϝāĻžāĨ¤
Exam Tip: Square root of a non-perfect square is always irrational. āĻĒā§ā§°ā§āĻŖ āĻŦā§°ā§āĻ āύāĻšā§ā§ąāĻž āϏāĻāĻā§āϝāĻžā§° āĻŦā§°ā§āĻāĻŽā§āϞ āϏāĻĻāĻžāϝāĻŧ āĻ āϝā§āĻā§āϤāĻŋāϏāĻāĻāϤ āĻšāϝāĻŧāĨ¤