What is Rational Number (āϝ⧁āĻ•ā§āϤāĻŋāϏāĻ‚āĻ—āϤ āϏāĻ‚āĻ–ā§āϝāĻž) & Irrational Number (āĻ…āϝ⧁āĻ•ā§āϤāĻŋāϏāĻ‚āĻ—āϤ āϏāĻ‚āĻ–ā§āϝāĻž) ?


1. Rational Number (āϝ⧁āĻ•ā§āϤāĻŋāϏāĻ‚āĻ—āϤ āϏāĻ‚āĻ–ā§āϝāĻž)


Definition: A rational number is a number that can be written in the form p/q, where p and q are integers and q ≠ 0.


āϏāĻ‚āĻœā§āĻžāĻž: āϝāĻŋ āϏāĻ‚āĻ–ā§āϝāĻž p/q āφāĻ•āĻžā§°āϤ āϞāĻŋāĻ–āĻŋāĻŦ āĻĒā§°āĻž āϝāĻžāϝāĻŧ (p āφ⧰⧁ q āĻĒā§‚ā§°ā§āĻŖāϏāĻ‚āĻ–ā§āϝāĻž, q ≠ 0), āϤāĻžāĻ• āϝ⧁āĻ•ā§āϤāĻŋāϏāĻ‚āĻ—āϤ āϏāĻ‚āĻ–ā§āϝāĻž āĻŦā§‹āϞ⧇āĨ¤


Ex / āωāĻĻāĻžāĻšā§°āĻŖ: 1/2 3/45 (= 5/1), 0.25, 0.333… (repeating)


Decimal form: terminating or repeating
āĻĻāĻļāĻŽāĻŋāĻ• ā§°ā§‚āĻĒ: āĻļ⧇āώ āĻšāϝāĻŧ āĻŦāĻž āĻĒ⧁āύ⧰āĻžāĻŦ⧃āĻ¤ā§āϤ āĻšāϝāĻŧ


Exam Trick Rational numbers can be expressed as p/q, while irrational numbers cannot. āϝ⧁āĻ•ā§āϤāĻŋāϏāĻ‚āĻ—āϤ āϏāĻ‚āĻ–ā§āϝāĻž p/q āφāĻ•āĻžā§°āϤ āϞāĻŋāĻ–āĻŋāĻŦ āĻĒāĻžā§°āĻŋ, āĻ•āĻŋāĻ¨ā§āϤ⧁ āĻ…āϝ⧁āĻ•ā§āϤāĻŋāϏāĻ‚āĻ—āϤ āϏāĻ‚āĻ–ā§āϝāĻž āϞāĻŋāĻ–āĻŋāĻŦ āĻ¨ā§‹ā§ąāĻžā§°āĻŋāĨ¤


2. Irrational Number (āĻ…āϝ⧁āĻ•ā§āϤāĻŋāϏāĻ‚āĻ—āϤ āϏāĻ‚āĻ–ā§āϝāĻž)


Definition: An irrational number is a number that cannot be written in the form p/q.


āϏāĻ‚āĻœā§āĻžāĻž: āϝāĻŋ āϏāĻ‚āĻ–ā§āϝāĻž p/q āφāĻ•āĻžā§°āϤ āϞāĻŋāĻ–āĻŋāĻŦ āĻ¨ā§‹ā§ąāĻžā§°āĻŋ, āϤāĻžāĻ• āĻ…āϝ⧁āĻ•ā§āϤāĻŋāϏāĻ‚āĻ—āϤ āϏāĻ‚āĻ–ā§āϝāĻž āĻŦā§‹āϞ⧇āĨ¤


Ex / āωāĻĻāĻžāĻšā§°āĻŖ: √2√5, π (āĻĒāĻžāχ), 0.1010010001… (non-repeating)


Decimal form: non-terminating and non-repeating
āĻĻāĻļāĻŽāĻŋāĻ• ā§°ā§‚āĻĒ: āĻļ⧇āώ āύāĻšāϝāĻŧ āφ⧰⧁ āĻĒ⧁āύ⧰āĻžāĻŦ⧃āĻ¤ā§āϤ āύāĻšāϝāĻŧ


Difference / āĻ…āϤāĻŋ āϏ⧰⧁ āĻĒāĻžā§°ā§āĻĨāĻ•ā§āϝ



  • Rational (āϝ⧁āĻ•ā§āϤāĻŋāϏāĻ‚āĻ—āϤ): p/q āφāĻ•āĻžā§°āϤ āϞāĻŋāĻ–āĻŋāĻŦ āĻĒāĻžā§°āĻŋ

  • Irrational (āĻ…āϝ⧁āĻ•ā§āϤāĻŋāϏāĻ‚āĻ—āϤ): p/q āφāĻ•āĻžā§°āϤ āϞāĻŋāĻ–āĻŋāĻŦ āĻ¨ā§‹ā§ąāĻžā§°āĻŋ


MCQs : Rational & Irrational Numbers (Class 10)


Q1. Which of the following is a rational number ? āϤāϞ⧰ āϕ⧋āύāĻŸā§‹ āϝ⧁āĻ•ā§āϤāĻŋāϏāĻ‚āĻ—āϤ āϏāĻ‚āĻ–ā§āϝāĻž ?
a) √2  b) √5  c) 3/7  d) π


Ans: c) 3/7


Explanation : 3/7 is already in p/q form, so it is rational. 3/7 p/q āφāĻ•āĻžā§°āϤ āφāϛ⧇, āϏ⧇āϝāĻŧ⧇āĻšā§‡ āĻāχāĻŸā§‹ āϝ⧁āĻ•ā§āϤāĻŋāϏāĻ‚āĻ—āϤ āϏāĻ‚āĻ–ā§āϝāĻžāĨ¤


Q2. Which of the following is irrational ? āϤāϞ⧰ āϕ⧋āύāĻŸā§‹ āĻ…āϝ⧁āĻ•ā§āϤāĻŋāϏāĻ‚āĻ—āϤ āϏāĻ‚āĻ–ā§āϝāĻž ?
a) 0.25  b) 4   c) √3  d) 1/5


Ans: c) √3


Explanation: √3 cannot be written as p/q. √3 p/q āφāĻ•āĻžā§°āϤ āϞāĻŋāĻ–āĻŋāĻŦ āĻ¨ā§‹ā§ąāĻžā§°āĻŋāĨ¤


Q3. √9 is, √9 āĻš’āϞ -
a) irrational  b) rational  c) whole only  d) none


Ans: b) rational


Explanation: √9 = 3 = 3/1, so it is rational. √9 = 3 = 3/1, āϏ⧇āϝāĻŧ⧇āĻšā§‡ āϝ⧁āĻ•ā§āϤāĻŋāϏāĻ‚āĻ—āϤāĨ¤


Q4. A terminating decimal is always. āĻļ⧇āώ āĻšā§‹ā§ąāĻž āĻĻāĻļāĻŽāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž āϏāĻĻāĻžāϝāĻŧ-
a) irrational  b) rational  c) whole  d) natural


Ans: b) rational


Explanation: Every terminating decimal can be written as a fraction. āĻļ⧇āώ āĻšā§‹ā§ąāĻž āĻĻāĻļāĻŽāĻŋāĻ• āĻ­āĻ—ā§āύāĻžāĻ‚āĻļ ā§°ā§‚āĻĒāϤ āϞāĻŋāĻ–āĻŋāĻŦ āĻĒāĻžā§°āĻŋāĨ¤


Q5. Which decimal is irrational ? āϕ⧋āύāĻŸā§‹ āĻĻāĻļāĻŽāĻŋāĻ• āĻ…āϝ⧁āĻ•ā§āϤāĻŋāϏāĻ‚āĻ—āϤ ?
a) 0.5  b) 0.333…  c) 0.1010010001…  d) 0.75


Ans: c) 0.1010010001…


Explanation: It is non-terminating and non-repeating. āĻāχāĻŸā§‹ āĻļ⧇āώ āύāĻšāϝāĻŧ āφ⧰⧁ āĻĒ⧁āύ⧰āĻžāĻŦ⧃āĻ¤ā§āϤ āύāĻšāϝāĻŧāĨ¤


Q6. Which of the following cannot be written as p/q ? āϤāϞ⧰ āϕ⧋āύāĻŸā§‹ p/q āφāĻ•āĻžā§°āϤ āϞāĻŋāĻ–āĻŋāĻŦ āĻ¨ā§‹ā§ąāĻžā§°āĻŋ ?
a) 7  b) 0.2  c) √7  d) −3


Ans: c) √7


Explanation: √7 is a square root of a non-perfect square. √7 āĻ…-āĻĒā§‚ā§°ā§āĻŖ āĻŦā§°ā§āĻ—ā§° āĻŦā§°ā§āĻ—āĻŽā§‚āϞāĨ¤


Q7. 0.666… is ,   0.666… āĻš’āϞ -
a) irrational  b) rational   c) whole   d) natural


Ans: b) rational


Explanation: 0.666… is repeating, so it is rational. āĻĒ⧁āύ⧰āĻžāĻŦ⧃āĻ¤ā§āϤ āĻĻāĻļāĻŽāĻŋāĻ• → āϝ⧁āĻ•ā§āϤāĻŋāϏāĻ‚āĻ—āϤāĨ¤


Q8. √16 is equal to, √16 ā§° āĻŽāĻžāύ -
a) 2   b) 4   c) irrational   d) none


Ans: b) 4


Explanation: √16 = 4, which is an integer and rational. √16 = 4, āĻĒā§‚ā§°ā§āĻŖāϏāĻ‚āĻ–ā§āϝāĻžāĨ¤


Q9. π (pi) is. π āĻš’āϞ -
a) rational  b) irrational  c) integer  d) whole


Ans: b) irrational


Explanation: π has non-terminating, non-repeating decimal. π ā§° āĻĻāĻļāĻŽāĻŋāĻ• āĻļ⧇āώ āύāĻšāϝāĻŧ āφ⧰⧁ āĻĒ⧁āύ⧰āĻžāĻŦ⧃āĻ¤ā§āϤ āύāĻšāϝāĻŧāĨ¤


Q10. Sum of a rational and an irrational number is - āĻāϟāĻž āϝ⧁āĻ•ā§āϤāĻŋāϏāĻ‚āĻ—āϤ āφ⧰⧁ āĻāϟāĻž āĻ…āϝ⧁āĻ•ā§āϤāĻŋāϏāĻ‚āĻ—āϤ āϏāĻ‚āĻ–ā§āϝāĻžā§° āϝ⧋āĻ—āĻĢāϞ -
a) rational  b) irrational  c) whole  d) integer


Ans: b) irrational


Explanation: Rational + Irrational = Irrational . āϝ⧁āĻ•ā§āϤāĻŋāϏāĻ‚āĻ—āϤ + āĻ…āϝ⧁āĻ•ā§āϤāĻŋāϏāĻ‚āĻ—āϤ = āĻ…āϝ⧁āĻ•ā§āϤāĻŋāϏāĻ‚āĻ—āϤ


Exam Tricks 



  • Terminating / Repeating decimal → Rational

  • Non-terminating & Non-repeating → Irrational

  • √ of non-perfect square → Irrational


Q. State whether √5​ is rational or irrational. √5 āĻ•āĻŋ āϝ⧁āĻ•ā§āϤāĻŋāϏāĻ‚āĻ—āϤ āύ⧇ āĻ…āϝ⧁āĻ•ā§āϤāĻŋāϏāĻ‚āĻ—āϤ āϏāĻ‚āĻ–ā§āϝāĻž ?


Ans: Irrational āĻ…āϝ⧁āĻ•ā§āϤāĻŋāϏāĻ‚āĻ—āϤ āϏāĻ‚āĻ–ā§āϝāĻž


Explanation:



  • A rational number can be written as p/qp/q, where p and q are integers and q ≠ 0. āϝ⧁āĻ•ā§āϤāĻŋāϏāĻ‚āĻ—āϤ āϏāĻ‚āĻ–ā§āϝāĻž p/q āφāĻ•āĻžā§°āϤ āϞāĻŋāĻ–āĻŋāĻŦ āĻĒāĻžā§°āĻŋāĨ¤

  • √5 cannot be written in the form p/q. √5 p/q āφāĻ•āĻžā§°āϤ āϞāĻŋāĻ–āĻŋāĻŦ āĻ¨ā§‹ā§ąāĻžā§°āĻŋāĨ¤

  • Therefore, √5 is irrational. āϏ⧇āϝāĻŧ⧇āĻšā§‡ √5 āĻ…āϝ⧁āĻ•ā§āϤāĻŋāϏāĻ‚āĻ—āϤ āϏāĻ‚āĻ–ā§āϝāĻžāĨ¤


Exam Tip: Square root of a non-perfect square is always irrational. āĻĒā§‚ā§°ā§āĻŖ āĻŦā§°ā§āĻ— āύāĻšā§‹ā§ąāĻž āϏāĻ‚āĻ–ā§āϝāĻžā§° āĻŦā§°ā§āĻ—āĻŽā§‚āϞ āϏāĻĻāĻžāϝāĻŧ āĻ…āϝ⧁āĻ•ā§āϤāĻŋāϏāĻ‚āĻ—āϤ āĻšāϝāĻŧāĨ¤