Squares and Square Roots â Tricks with Examples
Squares and Square Roots – Tricks
Class 10 Students
PART–A : Tricks to find SQUARES
1) Last Digit Trick
• If a number ends in 2, 3, 7, 8 → it is never a perfect square. āϝāĻĻāĻŋ āϏāĻāĻā§āϝāĻžā§° āĻļā§āώ āĻ
āĻāĻ 2, 3, 7, 8 āĻšāϝāĻŧ → āĻā§āϤāĻŋāϝāĻŧāĻžāĻ āĻŦā§°ā§āĻ āύāĻšāϝāĻŧāĨ¤
• If it ends in 0, 1, 4, 5, 6, 9 → it may be a perfect square. āϝāĻĻāĻŋ āĻļā§āώ āĻ
āĻāĻ 0, 1, 4, 5, 6, 9 āĻšāϝāĻŧ → āĻŦā§°ā§āĻ āĻš’āĻŦ āĻĒāĻžā§°ā§āĨ¤
2) Even–Odd Trick
• Square of an even number is even. āϝā§ā§° āϏāĻāĻā§āϝāĻžā§° āĻŦā§°ā§āĻ → āϝā§ā§°āĨ¤
• Square of an odd number is odd. āĻŦāĻŋāĻā§ā§° āϏāĻāĻā§āϝāĻžā§° āĻŦā§°ā§āĻ → āĻŦāĻŋāĻā§ā§°āĨ¤
3) Zeros Trick
• A perfect square always ends with an even number of zeros. āĻŦā§°ā§āĻāϏāĻāĻā§āϝāĻžā§° āĻļā§āώāϤ āϏāĻĻāĻžāϝāĻŧ āĻā§ā§° āϏāĻāĻā§āϝāĻ āĻļā§āύā§āϝ āĻĨāĻžāĻā§āĨ¤
• Odd number of zeros → not a square. āĻŦāĻŋāĻā§ā§° āĻļā§āύā§āϝ āĻĨāĻžāĻāĻŋāϞ⧠→ āĻŦā§°ā§āĻ āύāĻšāϝāĻŧāĨ¤
4) Square of numbers ending in 5
• Any number ending in 5 has square ending in 25. āϝāĻŋāĻā§āύ⧠āϏāĻāĻā§āϝāĻž āϝāĻžā§° āĻļā§āώ āĻ
āĻāĻ 5, āϤāĻžā§° āĻŦā§°ā§āĻ āϏāĻĻāĻžāϝāĻŧ 25 āϤ āĻļā§āώ āĻšāϝāĻŧāĨ¤
• Multiply the first part by the next number. āĻāĻā§° āĻ
āĻāĻļ × (āĻāĻā§° āϏāĻāĻā§āϝāĻž + 1)āĨ¤
Ex: 35² → 3×4 = 12 → 1225
āĻāĻĻāĻžāĻšā§°āĻŖ: 35² → 3×4 = 12 → 1225
PART–B : Tricks to find SQUARE ROOTS
5)Identify Perfect Square Trick
• If all prime factors can be paired, the number is a perfect square. āϝāĻĻāĻŋ āĻŽā§āϞāĻŋāĻ āĻā§āĻŖāĻ āϏāĻāϞ⧠āĻā§ā§°āĻž āĻā§ā§°āĻž āĻšāϝāĻŧ → āϏāĻāĻā§āϝāĻž āϏāĻŽā§āĻĒā§ā§°ā§āĻŖ āĻŦā§°ā§āĻāĨ¤
• If any factor is left alone, it is not a perfect square. āϝāĻĻāĻŋ āĻā§āύ⧠āĻā§āĻŖāĻ āĻāĻāϞāĻāĻž āĻĨāĻžāĻā§ → āϏāĻāĻā§āϝāĻž āĻŦā§°ā§āĻ āύāĻšāϝāĻŧāĨ¤
6) Prime Factorization Trick
• Find prime factors.
• Make pairs of equal factors.
• Take one from each pair and multiply → square root.
Ex: √324
324 = 2×2×3×3×3×3
Pairs → (2×2)(3×3)(3×3)
Take → 2×3×3 = 18 → √324 = 18
• āϏāĻāĻā§āϝāĻžāĻā§ āĻŽā§āϞāĻŋāĻ āĻā§āĻŖāĻ āĻā§°āĻžāĨ¤
• āϏāĻŽāĻžāύ āĻā§āĻŖāĻā§° āĻā§ā§°āĻž āĻŦāύā§ā§ąāĻžāĨ¤
• āĻĒā§ā§°āϤā§āϝā§āĻ āĻā§ā§°āĻžā§° āĻĒā§°āĻž āĻāĻāĻž āϞ⧠āĻā§āĻŖ āĻā§°āĻž → āĻŦā§°ā§āĻāĻŽā§āϞāĨ¤
āĻāĻĻāĻžāĻšā§°āĻŖ: √324 = 18
7) Estimation Trick
• Find two nearest squares. āĻāĻā§°ā§° āĻĻā§āĻāĻž āĻŦā§°ā§āĻ āĻŦāĻŋāĻāĻžā§°āĻžāĨ¤
• The root lies between them. āĻŦā§°ā§āĻāĻŽā§āϞ āϤā§āĻāĻāϞā§āĻā§° āĻŽāĻžāĻāϤ āĻĨāĻžāĻā§āĨ¤
Ex: √50
49 < 50 < 64 → 7² < 50 < 8² → √50 ≈ 7.1
āĻāĻĻāĻžāĻšā§°āĻŖ: √50 ≈ 7.1
8) Long Division Method Trick
• Make pairs of digits from right. āĻ
āĻāĻāĻŦā§ā§° āϏā§āĻāĻĢāĻžāϞ⧰ āĻĒā§°āĻž āĻā§ā§°āĻž āĻā§°āĻžāĨ¤
• Find the first digit of root. āĻĒā§ā§°āĻĨāĻŽ āĻ
āĻāĻāĻā§ āĻāϞāĻŋāϝāĻŧāĻžāĻāĨ¤
• Double the quotient to make new divisor. āĻāĻžāĻāĻĢāϞ āĻĻā§āĻā§āĻŖ āĻā§°āĻŋ āύāϤā§āύ āĻāĻžāĻāĻ āĻŦāύā§ā§ąāĻžāĨ¤
• Repeat till remainder becomes zero. āĻļā§āύā§āϝ āĻ
ā§ąāĻļāĻŋāώā§āĻ āύāĻšā§ā§ąāĻž āĻĒā§°ā§āϝāύā§āϤ āĻāϞāĻžāĻ āϝā§ā§ąāĻžāĨ¤
Ex: √529
5|29 → 2²=4 → remainder 1, bring 29 → 129
Double 2 → 4_ → 43×3=129 → √529 = 23
āĻāĻĻāĻžāĻšā§°āĻŖ: √529 = 23
9) Decimal Square Root Trick
• If the number has 2n decimal places, the square root will have n decimal places. āϝāĻĻāĻŋ āϏāĻāĻā§āϝāĻžāϤ 2n āĻāĻž āĻĻāĻļāĻŽāĻŋāĻ āĻ āĻāĻ āĻĨāĻžāĻā§, āϤā§āύā§āϤ⧠āĻŦā§°ā§āĻāĻŽā§āϞāϤ n āĻāĻž āĻĻāĻļāĻŽāĻŋāĻ āϏā§āĻĨāĻžāύ āĻĨāĻžāĻāĻŋāĻŦāĨ¤
Ex / āĻāĻĻāĻžāĻšā§°āĻŖ : √0.04 → 2 decimal places → root has 1 → 0.2
10) Exam Tips
• First check if the number is a perfect square. āĻĒā§ā§°āĻĨāĻŽā§ āĻāĻŋāύāĻžāĻā§āϤ āĻā§°āĻž — āϏāĻāĻā§āϝāĻž āĻŦā§°ā§āĻ āύ⧠āύāĻšāϝāĻŧāĨ¤
• If yes → use prime factorization (fast). āĻŦā§°ā§āĻ āĻš’āϞ⧠→ āĻŽā§āϞāĻŋāĻ āĻā§āĻŖāĻ āĻĒāĻĻā§āϧāϤāĻŋ āĻŦā§āĻ¯ā§ąāĻšāĻžā§° āĻā§°āĻžāĨ¤
• For big/decimal numbers → use long division. āĻĄāĻžāĻā§°/āĻĻāĻļāĻŽāĻŋāĻ āϏāĻāĻā§āϝāĻž āĻš’āϞ⧠→ āĻĻā§ā§°ā§āĻ āĻāĻžāĻ āĻĒāĻĻā§āϧāϤāĻŋāĨ¤
• Always verify: (square root)² = given number. āϏāĻĻāĻžāϝāĻŧ āϝāĻžāĻāĻžāĻ āĻā§°āĻž: āĻŦā§°ā§āĻāĻŽā§āϞ² = āĻŽā§āϞ āϏāĻāĻā§āϝāĻžāĨ¤
Quick Revision
• Ending 2,3,7,8 → Not square. āĻļā§āώ āĻ
āĻāĻ 2,3,7,8 → āĻŦā§°ā§āĻ āύāĻšāϝāĻŧ
• Perfect square → even zeros. āĻŦā§°ā§āĻāϏāĻāĻā§āϝāĻž → āĻā§ā§° āĻļā§āύā§āϝ
• Square of 5-ending number → ends in 25, 5 ā§° āĻŦā§°ā§āĻ → āĻļā§āώāϤ 25
• √529 = 23 (remember), √529 = 23 (āĻŽā§āĻāϏā§āĻĨ)
Part 1: Square Numbers
Ex 1: Perfect Square
Find if 49 is a perfect square. 49 āĻŦā§°ā§āĻāϏāĻāĻā§āϝāĻž āύ⧠āĻāĻžāĻāĻāĨ¤
49 = 7 × 7 → Perfect square āĻŦā§°ā§āĻāϏāĻāĻā§āϝāĻž
Even/Odd Property
6² = 36 → Even āϝā§ā§°
7² = 49 → Odd āĻŦāĻŋāĻā§ā§°
Last Digit Rule
Number ending in āĻļā§āώ āĻ
āĻāĻ 2, 3, 7, 8 → Not a perfect square āĻŦā§°ā§āĻ āύāĻšāϝāĻŧ
Ex: 72 → Not square āĻŦā§°ā§āĻ āύāĻšāϝāĻŧ
Interesting Patterns & Pythagorean Triplets
Ex : Sum of first n odd numbers
1 + 3 + 5 = 9 → 3²
Numbers between squares
Between 4² = 16 and 5² = 25
Non-square numbers = 2n = 2 × 4 = 8
Numbers: 17, 18, 19, 20, 21, 22, 23, 24
4² = 16 āĻā§°ā§ 5² = 25ā§° āĻŽāĻžāĻāϤ
āĻŦā§°ā§āĻ āύāĻšā§ā§ąāĻž āϏāĻāĻā§āϝāĻž = 2n = 2 × 4 = 8
āϏāĻāĻā§āϝāĻžāĻŦā§ā§°: 17, 18, 19, 20, 21, 22, 23, 24
Pythagorean Triplet
Find triplet with one member 12
2m = 12 → m = 6
Triplet = 2m, m² - 1, m² + 1 → 12, 35, 37
Check: 12² + 35² = 144 + 1225 = 1369 = 37²
āĻāĻāĻž āϏāĻĻāϏā§āϝ 12
2m = 12 → m = 6
āϤā§ā§°āϝāĻŧā§ = 2m, m² -1, m² + 1 → 12, 35, 37
āϝāĻžāĻāĻžāĻ: 12² + 35² = 37²
Square Root by Prime Factorization
Ex: √324
324 → 2 × 2 × 3 × 3 × 3 × 3
Pairs āĻā§ā§°āĻž : (2×2), (3×3), (3×3)
Take one from each āĻĒā§ā§°āϤā§āϝā§āĻ āĻā§ā§°āĻž āĻāĻāĻžā§° āĻĒā§°āĻž āĻāĻ → 2 × 3 × 3 = 18
√324 = 18
Ex: √81
81 → 3 × 3 × 3 × 3
Pairs āĻā§ā§°āĻž: (3×3), (3×3)
Take one from each āĻĒā§ā§°āϤā§āϝā§āĻ āĻā§ā§°āĻž āĻāĻāĻžā§° āĻĒā§°āĻž āĻāĻ → 3 × 3 = 9
√81 = 9
Square Root by Long Division
Ex: √529
1st : 5 | 29
2nd : 5 āϤāĻā§ āϏ⧰⧠āĻŦā§°ā§āĻ small square ≤ 5 → 2² = 4
3rd : Subtract āĻŦāĻŋāϝāĻŧā§āĻ 5 - 4 = 1, bring down 29 → 129
4th : Double quotient āĻāĻžāĻāĻĢāϞ āĻĻā§āĻā§āĻŖ 2 × 2 = 4 → 4_
5th : Find digit āĻ
āĻāĻ → 43 × 3 = 129
√529 = 23
√2025 (Decimal/Big Number)
1st : 20 | 25
2nd : small square 20 āϤāĻā§ āϏ⧰⧠āĻŦā§°ā§āĻ ≤ 20 → 4² = 16
3rd : Subtract āĻŦāĻŋāϝāĻŧā§āĻ 20−16=4, bring down 25 → 425
4th : Double quotient āĻāĻžāĻāĻĢāϞ āĻĻā§āĻā§āĻŖ 4×2=8 → 8_
5th : Find digit āĻ
āĻāĻ→ 85 × 5 = 425
√2025 = 45