Squares and Square Roots – Tricks with Examples


Squares and Square Roots – Tricks


Class 10 Students


PART–A : Tricks to find SQUARES


1) Last Digit Trick


• If a number ends in 2, 3, 7, 8 → it is never a perfect square. āϝāĻĻāĻŋ āϏāĻ‚āĻ–ā§āϝāĻžā§° āĻļ⧇āώ āĻ…āĻ‚āĻ• 2, 3, 7, 8 āĻšāϝāĻŧ → āϕ⧇āϤāĻŋāϝāĻŧāĻžāĻ“ āĻŦā§°ā§āĻ— āύāĻšāϝāĻŧāĨ¤
• If it ends in 0, 1, 4, 5, 6, 9 → it may be a perfect square. āϝāĻĻāĻŋ āĻļ⧇āώ āĻ…āĻ‚āĻ• 0, 1, 4, 5, 6, 9 āĻšāϝāĻŧ → āĻŦā§°ā§āĻ— āĻš’āĻŦ āĻĒāĻžā§°ā§‡āĨ¤


2) Even–Odd Trick


• Square of an even number is even. āϝ⧋⧰ āϏāĻ‚āĻ–ā§āϝāĻžā§° āĻŦā§°ā§āĻ— → āϝ⧋⧰āĨ¤
• Square of an odd number is oddāĻŦāĻŋāĻœā§‹ā§° āϏāĻ‚āĻ–ā§āϝāĻžā§° āĻŦā§°ā§āĻ— → āĻŦāĻŋāĻœā§‹ā§°āĨ¤


3) Zeros Trick


• A perfect square always ends with an even number of zeros. āĻŦā§°ā§āĻ—āϏāĻ‚āĻ–ā§āϝāĻžā§° āĻļ⧇āώāϤ āϏāĻĻāĻžāϝāĻŧ āĻœā§‹ā§° āϏāĻ‚āĻ–ā§āϝāĻ• āĻļā§‚āĻ¨ā§āϝ āĻĨāĻžāϕ⧇āĨ¤
Odd number of zeros → not a square. āĻŦāĻŋāĻœā§‹ā§° āĻļā§‚āĻ¨ā§āϝ āĻĨāĻžāĻ•āĻŋāϞ⧇ → āĻŦā§°ā§āĻ— āύāĻšāϝāĻŧāĨ¤


4) Square of numbers ending in 5


• Any number ending in 5 has square ending in 25. āϝāĻŋāϕ⧋āύ⧋ āϏāĻ‚āĻ–ā§āϝāĻž āϝāĻžā§° āĻļ⧇āώ āĻ…āĻ‚āĻ• 5, āϤāĻžā§° āĻŦā§°ā§āĻ— āϏāĻĻāĻžāϝāĻŧ 25 āϤ āĻļ⧇āώ āĻšāϝāĻŧāĨ¤
• Multiply the first part by the next number. āφāĻ—ā§° āĻ…āĻ‚āĻļ × (āφāĻ—ā§° āϏāĻ‚āĻ–ā§āϝāĻž + 1)āĨ¤


Ex: 35² → 3×4 = 12 → 1225


āωāĻĻāĻžāĻšā§°āĻŖ: 35² → 3×4 = 12 → 1225


PART–B : Tricks to find SQUARE ROOTS


5)Identify Perfect Square Trick


• If all prime factors can be paired, the number is a perfect square.  āϝāĻĻāĻŋ āĻŽā§ŒāϞāĻŋāĻ• āϗ⧁āĻŖāĻ• āϏāĻ•āϞ⧋ āĻœā§‹ā§°āĻž āĻœā§‹ā§°āĻž āĻšāϝāĻŧ → āϏāĻ‚āĻ–ā§āϝāĻž āϏāĻŽā§āĻĒā§‚ā§°ā§āĻŖ āĻŦā§°ā§āĻ—āĨ¤
• If any factor is left alone, it is not a perfect square. āϝāĻĻāĻŋ āϕ⧋āύ⧋ āϗ⧁āĻŖāĻ• āĻāĻ•āϞāĻ—āĻž āĻĨāĻžāϕ⧇ → āϏāĻ‚āĻ–ā§āϝāĻž āĻŦā§°ā§āĻ— āύāĻšāϝāĻŧāĨ¤


6) Prime Factorization Trick


• Find prime factors.
• Make pairs of equal factors.
• Take one from each pair and multiply → square root.


Ex: √324
324 = 2×2×3×3×3×3
Pairs → (2×2)(3×3)(3×3)
Take → 2×3×3 = 18 → √324 = 18


• āϏāĻ‚āĻ–ā§āϝāĻžāĻŸā§‹ āĻŽā§ŒāϞāĻŋāĻ• āϗ⧁āĻŖāĻ• āϕ⧰āĻžāĨ¤
• āϏāĻŽāĻžāύ āϗ⧁āĻŖāϕ⧰ āĻœā§‹ā§°āĻž āĻŦāĻ¨ā§‹ā§ąāĻžāĨ¤
• āĻĒā§ā§°āĻ¤ā§āϝ⧇āĻ• āĻœā§‹ā§°āĻžā§° āĻĒā§°āĻž āĻāϟāĻž āϞ⧈ āϗ⧁āĻŖ āϕ⧰āĻž → āĻŦā§°ā§āĻ—āĻŽā§‚āϞāĨ¤


āωāĻĻāĻžāĻšā§°āĻŖ: √324 = 18


7) Estimation Trick


• Find two nearest squares. āĻ“āϚ⧰⧰ āĻĻ⧁āϟāĻž āĻŦā§°ā§āĻ— āĻŦāĻŋāϚāĻžā§°āĻžāĨ¤
• The root lies between them. āĻŦā§°ā§āĻ—āĻŽā§‚āϞ āϤ⧇āĻ“āρāϞ⧋āϕ⧰ āĻŽāĻžāϜāϤ āĻĨāĻžāϕ⧇āĨ¤


Ex: √50
49 < 50 < 64 → 7² < 50 < 8² → √50 ≈ 7.1


āωāĻĻāĻžāĻšā§°āĻŖ: √50 ≈ 7.1


8) Long Division Method Trick


• Make pairs of digits from right. āĻ…āĻ‚āĻ•āĻŦā§‹ā§° āϏ⧋āρāĻĢāĻžāϞ⧰ āĻĒā§°āĻž āĻœā§‹ā§°āĻž āϕ⧰āĻžāĨ¤
• Find the first digit of root. āĻĒā§ā§°āĻĨāĻŽ āĻ…āĻ‚āĻ•āĻŸā§‹ āωāϞāĻŋāϝāĻŧāĻžāĻ“āĨ¤
Double the quotient to make new divisor. āĻ­āĻžāĻ—āĻĢāϞ āĻĻ⧁āϗ⧁āĻŖ āϕ⧰āĻŋ āύāϤ⧁āύ āĻ­āĻžāĻ—āĻ• āĻŦāĻ¨ā§‹ā§ąāĻžāĨ¤
• Repeat till remainder becomes zero. āĻļā§‚āĻ¨ā§āϝ āĻ…ā§ąāĻļāĻŋāĻˇā§āϟ āύāĻšā§‹ā§ąāĻž āĻĒā§°ā§āϝāĻ¨ā§āϤ āϚāϞāĻžāχ āĻ¯ā§‹ā§ąāĻžāĨ¤


Ex: √529
5|29 → 2²=4 → remainder 1, bring 29 → 129
Double 2 → 4_ → 43×3=129 → √529 = 23


āωāĻĻāĻžāĻšā§°āĻŖ: √529 = 23


9) Decimal Square Root Trick


• If the number has 2n decimal places, the square root will have n decimal places. āϝāĻĻāĻŋ āϏāĻ‚āĻ–ā§āϝāĻžāϤ 2n āϟāĻž āĻĻāĻļāĻŽāĻŋāĻ• āĻ…āĻ‚āĻ• āĻĨāĻžāϕ⧇, āϤ⧇āĻ¨ā§āϤ⧇ āĻŦā§°ā§āĻ—āĻŽā§‚āϞāϤ n āϟāĻž āĻĻāĻļāĻŽāĻŋāĻ• āĻ¸ā§āĻĨāĻžāύ āĻĨāĻžāĻ•āĻŋāĻŦāĨ¤


Ex / āωāĻĻāĻžāĻšā§°āĻŖ : √0.04 → 2 decimal places → root has 1 → 0.2


10) Exam Tips


• First check if the number is a perfect square. āĻĒā§ā§°āĻĨāĻŽā§‡ āϚāĻŋāύāĻžāĻ•ā§āϤ āϕ⧰āĻž — āϏāĻ‚āĻ–ā§āϝāĻž āĻŦā§°ā§āĻ— āύ⧇ āύāĻšāϝāĻŧāĨ¤
• If yes → use prime factorization (fast). āĻŦā§°ā§āĻ— āĻš’āϞ⧇ → āĻŽā§ŒāϞāĻŋāĻ• āϗ⧁āĻŖāĻ• āĻĒāĻĻā§āϧāϤāĻŋ āĻŦā§āĻ¯ā§ąāĻšāĻžā§° āϕ⧰āĻžāĨ¤
• For big/decimal numbers → use long division. āĻĄāĻžāϙ⧰/āĻĻāĻļāĻŽāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž āĻš’āϞ⧇ → āĻĻā§€ā§°ā§āϘ āĻ­āĻžāĻ— āĻĒāĻĻā§āϧāϤāĻŋāĨ¤
• Always verify: (square root)² = given number. āϏāĻĻāĻžāϝāĻŧ āϝāĻžāϚāĻžāχ āϕ⧰āĻž: āĻŦā§°ā§āĻ—āĻŽā§‚āϞ² = āĻŽā§‚āϞ āϏāĻ‚āĻ–ā§āϝāĻžāĨ¤


Quick Revision


• Ending 2,3,7,8 → Not square. āĻļ⧇āώ āĻ…āĻ‚āĻ• 2,3,7,8 → āĻŦā§°ā§āĻ— āύāĻšāϝāĻŧ
• Perfect square → even zeros. āĻŦā§°ā§āĻ—āϏāĻ‚āĻ–ā§āϝāĻž → āĻœā§‹ā§° āĻļā§‚āĻ¨ā§āϝ
• Square of 5-ending number → ends in 25, 5 ā§° āĻŦā§°ā§āĻ— → āĻļ⧇āώāϤ 25
• √529 = 23 (remember), √529 = 23 (āĻŽā§āĻ–āĻ¸ā§āĻĨ)


Part 1: Square Numbers


Ex 1: Perfect Square


Find if 49 is a perfect square. 49 āĻŦā§°ā§āĻ—āϏāĻ‚āĻ–ā§āϝāĻž āύ⧇ āϚāĻžāĻ“āρāĨ¤
49 = 7 × 7 →  Perfect square āĻŦā§°ā§āĻ—āϏāĻ‚āĻ–ā§āϝāĻž


Even/Odd Property


6² = 36 → Even āϝ⧋⧰
7² = 49 → Odd āĻŦāĻŋāĻœā§‹ā§°


Last Digit Rule


Number ending in āĻļ⧇āώ āĻ…āĻ‚āĻ• 2, 3, 7, 8 → Not a perfect square āĻŦā§°ā§āĻ— āύāĻšāϝāĻŧ
Ex: 72 → Not square āĻŦā§°ā§āĻ— āύāĻšāϝāĻŧ


Interesting Patterns & Pythagorean Triplets


Ex : Sum of first n odd numbers


1 + 3 + 5 = 9 → 3²


Numbers between squares


Between 4² = 16 and 5² = 25 
Non-square numbers = 2n = 2 × 4 = 8
Numbers: 17, 18, 19, 20, 21, 22, 23, 24


4² = 16 āφ⧰⧁ 5² = 25ā§° āĻŽāĻžāϜāϤ
āĻŦā§°ā§āĻ— āύāĻšā§‹ā§ąāĻž āϏāĻ‚āĻ–ā§āϝāĻž = 2n = 2 × 4 = 8
āϏāĻ‚āĻ–ā§āϝāĻžāĻŦā§‹ā§°: 17, 18, 19, 20, 21, 22, 23, 24


Pythagorean Triplet


Find triplet with one member 12
2m = 12 → m = 6
Triplet = 2m, m² - 1, m² + 1 → 12, 35, 37
Check: 12² + 35² = 144 + 1225 = 1369 = 37²


āĻāϟāĻž āϏāĻĻāĻ¸ā§āϝ 12
2m = 12 → m = 6
āĻ¤ā§ā§°āϝāĻŧā§€ = 2m, m² -1, m² + 1 → 12, 35, 37
āϝāĻžāϚāĻžāχ: 12² + 35² = 37² 


Square Root by Prime Factorization


Ex: √324


324 → 2 × 2 × 3 × 3 × 3 × 3
Pairs āĻœā§‹ā§°āĻž : (2×2), (3×3), (3×3)
Take one from each āĻĒā§ā§°āĻ¤ā§āϝ⧇āĻ• āĻœā§‹ā§°āĻž āĻāϟāĻžā§° āĻĒā§°āĻž āĻāĻ•  → 2 × 3 × 3 = 18
√324 = 18


Ex: √81


81 → 3 × 3 × 3 × 3
Pairs āĻœā§‹ā§°āĻž: (3×3), (3×3)
Take one from each āĻĒā§ā§°āĻ¤ā§āϝ⧇āĻ• āĻœā§‹ā§°āĻž āĻāϟāĻžā§° āĻĒā§°āĻž āĻāĻ• → 3 × 3 = 9
√81 = 9


Square Root by Long Division


Ex: √529


1st : 5 | 29
2nd :  5 āϤāĻ•ā§ˆ āϏ⧰⧁ āĻŦā§°ā§āĻ— small square  ≤ 5 → 2² = 4
3rd : Subtract āĻŦāĻŋāϝāĻŧā§‹āĻ— 5 - 4 = 1, bring down 29 → 129
4th : Double quotient āĻ­āĻžāĻ—āĻĢāϞ āĻĻ⧁āϗ⧁āĻŖ  2 × 2 = 4 → 4_
5th : Find digit āĻ…āĻ‚āĻ• → 43 × 3 = 129
√529 = 23


√2025 (Decimal/Big Number)


1st : 20 | 25
2nd : small square 20 āϤāĻ•ā§ˆ āϏ⧰⧁ āĻŦā§°ā§āĻ— ≤ 20 → 4² = 16
3rd : Subtract āĻŦāĻŋāϝāĻŧā§‹āĻ— 20−16=4, bring down 25 → 425
4th : Double quotient āĻ­āĻžāĻ—āĻĢāϞ āĻĻ⧁āϗ⧁āĻŖ 4×2=8 → 8_
5th : Find digit āĻ…āĻ‚āĻ•→ 85 × 5 = 425
√2025 = 45