Real Numbers Notes: āĻĒā§°āĻŋāĻŽā§āϝāĻŧ āϏāĻāĻā§āϝāĻž (rational number) &āĻ āĻĒā§°āĻŋāĻŽā§āϝāĻŧ āϏāĻāĻā§āϝāĻž (irrational number)
Rational Number & Irrational Number
1. Rational Number -āĻĒā§°āĻŋāĻŽā§āϝāĻŧ āϏāĻāĻā§āϝāĻž
Definition | āϏāĻāĻā§āĻāĻž : A rational number is a number that can be written in the form p/q, where p and q are integers and q≠0. āϝāĻŋ āϏāĻāĻā§āϝāĻž p/q āĻāĻāĻžā§°āϤ āϞāĻŋāĻāĻŋāĻŦ āĻĒāĻžā§°āĻŋ, āϝ’āϤ p āĻā§°ā§ q āĻĒā§ā§°ā§āĻŖāϏāĻāĻā§āϝāĻž āĻā§°ā§ q≠0, āϤāĻžāĻ āĻĒā§°āĻŋāĻŽā§āϝāĻŧ āϏāĻāĻā§āϝāĻž āĻā§ā§ąāĻž āĻšāϝāĻŧāĨ¤
Ex | āĻāĻĻāĻžāĻšā§°āĻŖ : 1/2,â â−3/4,â â5,â â0,â â0.25
Properties | āĻā§āĻŖāϧ⧰ā§āĻŽ
- Rational numbers can be terminating or recurring decimals. (āĻĒā§°āĻŋāĻŽā§āϝāĻŧ āϏāĻāĻā§āϝāĻž āĻļā§āώ āĻšā§ā§ąāĻž āĻŦāĻž āĻĒā§āύ⧰āĻžāĻŦā§āϤā§āϤ āĻĻāĻļāĻŽāĻŋāĻ āĻš’āĻŦ āĻĒāĻžā§°ā§)
- Sum, difference, and product of rational numbers are always rational. (āϝā§āĻ, āĻŦāĻŋā§ā§āĻ, āĻā§āĻŖāĻĢāϞ āϏāĻĻāĻžāϝāĻŧ āĻĒā§°āĻŋāĻŽā§āϝāĻŧ)
- Rational numbers can be represented on the number line. (āϏāĻāĻā§āϝāĻžā§°ā§āĻāĻžāϤ āĻĻā§āĻā§ā§ąāĻžāĻŦ āĻĒāĻžā§°āĻŋ)
Uses | āĻŦā§āĻ¯ā§ąāĻšāĻžā§° : Used in daily life like money, measurement, time, distance. āĻĻā§āύāύā§āĻĻāĻŋāύ āĻā§ā§ąāύāϤ āϧāύ, āĻŽāĻžāĻĒ, āϏāĻŽāϝāĻŧ, āĻĻā§ā§°āϤā§āĻŦ āĻāĻĻāĻŋāϤ āĻŦā§āĻ¯ā§ąāĻšāĻžā§° āĻšāϝāĻŧāĨ¤
2. Irrational Number | āĻ āĻĒā§°āĻŋāĻŽā§āϝāĻŧ āϏāĻāĻā§āϝāĻž
Definition - āϏāĻāĻā§āĻāĻž: An irrational number is a number that cannot be written in the form p/q where p and q are integers. āϝāĻŋ āϏāĻāĻā§āϝāĻž p/q āĻāĻāĻžā§°āϤ āϞāĻŋāĻāĻŋāĻŦ āύā§ā§ąāĻžā§°āĻŋ, āϤāĻžāĻ āĻ āĻĒā§°āĻŋāĻŽā§āϝāĻŧ āϏāĻāĻā§āϝāĻž āĻā§ā§ąāĻž āĻšāϝāĻŧāĨ¤
Ex- āĻāĻĻāĻžāĻšā§°āĻŖ : √2,â â√3,â â√5,â âπ
Properties | āĻā§āĻŖāϧ⧰ā§āĻŽ
- Irrational numbers have non-terminating, non-repeating decimals (āĻļā§āώ āύā§āĻšā§ā§ąāĻž āĻā§°ā§ āĻĒā§āύ⧰āĻžāĻŦā§āϤā§āϤ āύā§āĻšā§ā§ąāĻž āĻĻāĻļāĻŽāĻŋāĻ)
- Cannot be expressed as p/q , p/q āĻāĻāĻžā§°āϤ āϞāĻŋāĻāĻŋāĻŦ āύā§ā§ąāĻžā§°āĻŋ)
- Sum of a rational and an irrational number is irrational (āĻĒā§°āĻŋāĻŽā§āϝāĻŧ + āĻ āĻĒā§°āĻŋāĻŽā§āϝāĻŧ = āĻ āĻĒā§°āĻŋāĻŽā§āϝāĻŧ)
Uses - āĻŦā§āĻ¯ā§ąāĻšāĻžā§° : Used in geometry, circle, square root, scientific calculations. āĻā§āϝāĻžāĻŽāĻŋāϤāĻŋ, āĻŦā§āϤā§āϤ, āĻŦā§°ā§āĻāĻŽā§āϞ āĻā§°ā§ āĻŦāĻŋāĻā§āĻāĻžāύā§āϝāĻŧ āĻāĻŖāύāĻžāϤ āĻŦā§āĻ¯ā§ąāĻšāĻžā§° āĻšāϝāĻŧāĨ¤
3. Difference between Rational and Irrational Numbers (āĻĒā§°āĻŋāĻŽā§āϝāĻŧ āĻā§°ā§ āĻ āĻĒā§°āĻŋāĻŽā§āϝāĻŧ āϏāĻāĻā§āϝāĻžā§° āĻĒāĻžā§°ā§āĻĨāĻā§āϝ)
Rational Number (āĻĒā§°āĻŋāĻŽā§āϝāĻŧ āϏāĻāĻā§āϝāĻž)
- Can be written as p/q p/q āĻāĻāĻžā§°āϤ āϞāĻŋāĻāĻŋāĻŦ āĻĒāĻžā§°āĻŋ, āϝ’āϤ p,q āĻĒā§ā§°ā§āĻŖāϏāĻāĻā§āϝāĻž āĻā§°ā§ q≠0āĨ¤
- Has terminating or recurring decimal : āĻĻāĻļāĻŽāĻŋāĻ ā§°ā§āĻĒ āĻļā§āώ āĻšā§ā§ąāĻž (terminating) āĻŦāĻž āĻĒā§āύ⧰āĻžāĻŦā§āϤā§āϤ (recurring) āĻšāϝāĻŧāĨ¤
- Examples:1/2,â â3,â â0.5
- Used in daily calculations : āĻĻā§āύāύā§āĻĻāĻŋāύ āĻāĻŖāύāĻž āϝā§āύ⧠āϧāύ, āϏāĻŽāϝāĻŧ, āĻĻā§ā§°āϤā§āĻŦ āĻāĻĻāĻŋāϤ āĻŦā§āĻ¯ā§ąāĻšāĻžā§° āĻšāϝāĻŧāĨ¤
Irrational Number (āĻ āĻĒā§°āĻŋāĻŽā§āϝāĻŧ āϏāĻāĻā§āϝāĻž)
- Cannot be written as p/qp/q āĻāĻāĻžā§°āϤ āϞāĻŋāĻāĻŋāĻŦ āύā§ā§ąāĻžā§°āĻŋāĨ¤
- Has non-terminating, non-repeating decimal : āĻĻāĻļāĻŽāĻŋāĻ ā§°ā§āĻĒ āĻļā§āώ āύāĻšāϝāĻŧ āĻā§°ā§ āĻĒā§āύ⧰āĻžāĻŦā§āϤā§āϤ āύāĻšāϝāĻŧāĨ¤
- Ex: √2,â â√3,â âπ
- Used in geometry and science: āĻā§āϝāĻžāĻŽāĻŋāϤāĻŋ āĻā§°ā§ āĻŦāĻŋāĻā§āĻāĻžāύā§āϝāĻŧ āĻāĻŖāύāĻžāϤ āĻŦā§āĻ¯ā§ąāĻšāĻžā§° āĻšāϝāĻŧāĨ¤
Exam Tip : āĻĒāĻžā§°ā§āĻĨāĻā§āϝ āĻĒā§ā§°āĻļā§āύāϤ by point āĻŦāĻž table form āϞāĻŋāĻāĻŋāϞ⧠āĻĒā§ā§°ā§āĻŖ āύāĻŽā§āĻŦā§° āĻĒā§ā§ąāĻž āϏāĻšāĻ āĻšāϝāĻŧ
One-Line Memory Trick
- Rational = Fraction possible, āĻĒā§°āĻŋāĻŽā§āϝāĻŧ = āĻāĻā§āύāĻžāĻāĻļāϤ āϞāĻŋāĻāĻŋāĻŦ āĻĒāĻžā§°āĻŋ
- Irrational = Fraction not possible , āĻ āĻĒā§°āĻŋāĻŽā§āϝāĻŧ = āĻāĻā§āύāĻžāĻāĻļāϤ āϞāĻŋāĻāĻŋāĻŦ āύā§ā§ąāĻžā§°āĻŋ
āĻĒā§ā§°āĻļā§āύ.Q : āϝāĻĻāĻŋ 2+√3/5āĻāĻāĻž āĻ āĻĒā§°āĻŋāĻŽā§āϝāĻŧ āϏāĻāĻā§āϝāĻž (irrational number) āĻšāϝāĻŧ, āϤā§āύā§āϤ⧠āĻĒā§ā§°āĻŽāĻžāĻŖ āĻā§°āĻž āϝ⧠āĻāĻāĻžāĻ āĻ āĻĒā§°āĻŋāĻŽā§āϝāĻŧ āϏāĻāĻā§āϝāĻžāĨ¤
āϏāĻŽāĻžāϧāĻžāύ (Soln)
āϧ⧰āĻž āϝāĻžāĻāĻ,
āĻāĻāĻž āĻĒā§°āĻŋāĻŽā§āϝāĻŧ āϏāĻāĻā§āϝāĻž (rational number)āĨ¤
āϝāĻŋāĻšā§āϤ⧠5 āĻāĻāĻž āĻĒā§°āĻŋāĻŽā§āϝāĻŧ āϏāĻāĻā§āϝāĻž, āϏā§āϝāĻŧā§āĻšā§ āĻĒā§°āĻŋāĻŽā§āϝāĻŧ āϏāĻāĻā§āϝāĻžā§° āϏā§āϤ⧠āĻĒā§°āĻŋāĻŽā§āϝāĻŧ āϏāĻāĻā§āϝāĻžā§° āĻā§āĻŖāĻĢāϞ āϏāĻĻāĻžāϝāĻŧ āĻĒā§°āĻŋāĻŽā§āϝāĻŧ āĻšāϝāĻŧāĨ¤
āĻ āϤ āĻāĻŦ, 5 x
āĻ ā§°ā§āĻĨāĻžā§, āĻāĻāĻž āĻĒā§°āĻŋāĻŽā§āϝāĻŧ āϏāĻāĻā§āϝāĻžāĨ¤
āĻāĻŽāĻŋ āĻāĻžāύ⧠āϝ⧠2 āĻāĻāĻž āĻĒā§°āĻŋāĻŽā§āϝāĻŧ āϏāĻāĻā§āϝāĻžāĨ¤ āĻĒā§°āĻŋāĻŽā§āϝāĻŧ āϏāĻāĻā§āϝāĻžā§° āĻĒā§°āĻž āĻĒā§°āĻŋāĻŽā§āϝāĻŧ āϏāĻāĻā§āϝāĻž āĻŦāĻŋā§ā§āĻ āĻā§°āĻŋāϞ⧠āĻĢāϞāĻžāĻĢāϞ āϏāĻĻāĻžāϝāĻŧ āĻĒā§°āĻŋāĻŽā§āϝāĻŧ āĻšāϝāĻŧāĨ¤
āϏā§āϝāĻŧā§āĻšā§,
āĻāĻŋāύā§āϤā§, āĻāĻāĻž āĻ āĻĒā§°āĻŋāĻŽā§āϝāĻŧ āϏāĻāĻā§āϝāĻžāĨ¤
āĻāĻāĻā§ āĻāĻŽāĻžā§° āϧāĻžā§°āĻŖāĻžā§° āϏā§āϤ⧠āĻŦāĻŋā§°ā§āϧ (contradiction) āϏā§āώā§āĻāĻŋ āĻā§°ā§āĨ¤
āϏā§āϝāĻŧā§ āϧāĻžā§°āĻŖāĻžāĻā§ āĻā§āϞāĨ¤
āĻ āϤāĻāĻŦ,
āϏāĻŋāĻĻā§āϧāĻžāύā§āϤ (Conclusion) : āĻĒā§ā§°āĻŽāĻžāĻŖāĻŋāϤ āĻš’āϞ āϝ⧠āĻāĻāĻž āĻ āĻĒā§°āĻŋāĻŽā§āϝāĻŧ āϏāĻāĻā§āϝāĻžāĨ¤
Exam Tip (āĻā§āϰā§āϤā§āĻŦāĻĒā§ā§°ā§āĻŖ): āĻāĻāĻā§ āĻāĻāĻž contradiction method-ā§° āĻĒā§ā§°āĻļā§āύāĨ¤ āĻļā§āώāϤ āϏāĻĻāĻžāϝāĻŧ āĻāĻ āĻŦāĻžāĻā§āϝāĻā§ āϞāĻŋāĻāĻŋāĻŦāĻž —
“āĻāĻāĻā§ āĻāĻŽāĻžā§° āϧāĻžā§°āĻŖāĻžā§° āϏā§āϤ⧠āĻŦāĻŋā§°ā§āϧ āϏā§āώā§āĻāĻŋ āĻā§°ā§āĨ¤”
Q - āĻĒā§ā§°āĻļā§āύ : Prove that √5â is an irrational number. āĻĒā§ā§°āĻŽāĻžāĻŖ āĻā§°āĻž āϝ⧠5\sqrt{5} āĻāĻāĻž āĻ āĻĒā§°āĻŋāĻŽā§āϝāĻŧ āϏāĻāĻā§āϝāĻžāĨ¤
āϏāĻŽāĻžāϧāĻžāύ (Soln)
Let us assume that √5 is a rational number. āϧ⧰āĻž āϝāĻžāĻāĻ, √5 āĻāĻāĻž āĻĒā§°āĻŋāĻŽā§āϝāĻŧ āϏāĻāĻā§āϝāĻžāĨ¤
√5
where p and q are co-prime integers and q ≠ 0
āϝ’āϤ p āĻā§°ā§ q āϏāĻšāĻŽāĻŋāϤāĻŋāĻšā§āύ āĻĒā§ā§°ā§āĻŖāϏāĻāĻā§āϝāĻž āĻā§°ā§ q ≠ 0āĨ¤
Squaring both sides, āĻāĻāϝāĻŧ āĻĢāĻžāϞ āϏā§āĻā§ā§ąā§āϝāĻŧāĻžā§° āĻā§°āĻŋāϞā§,
5=p2/q2⇒p2 = 5q2
So, p2 is divisible by 5, hence p is divisible by 5.
āĻāϝāĻŧāĻžāϤ p2 5-ā§°ā§ āĻŦāĻŋāĻāĻžāĻā§āϝ, āϏā§āϝāĻŧā§āĻšā§ p 5-ā§°ā§ āĻŦāĻŋāĻāĻžāĻā§āϝāĨ¤
Let p = 5k
āϧ⧰āĻž āϝāĻžāĻāĻ p = 5kāĨ¤
(5k)2 = 5q2 ⇒ q2 = 5k2
Thus, q is also divisible by 5.
āĻāϝāĻŧāĻžā§° āĻĒā§°āĻž q āĻ 5-ā§°ā§ āĻŦāĻŋāĻāĻžāĻā§āϝāĨ¤
This contradicts our assumption that pp and qq are co-prime.
āĻāĻāĻā§ āĻāĻŽāĻžā§° āϧāĻžā§°āĻŖāĻžā§° āϏā§āϤ⧠āĻŦāĻŋā§°ā§āϧ āϏā§āώā§āĻāĻŋ āĻā§°ā§āĨ¤
Hence, the assumption is wrong. āϏā§āϝāĻŧā§ āϧāĻžā§°āĻŖāĻžāĻā§ āĻā§āϞāĨ¤
Conclusion - āϏāĻŋāĻĻā§āϧāĻžāύā§āϤ
Therefore, √5 is an irrational number. āĻ āϤāĻāĻŦ, √5 āĻāĻāĻž āĻ āĻĒā§°āĻŋāĻŽā§āϝāĻŧ āϏāĻāĻā§āϝāĻžāĨ¤
Exam Tip - āĻĒā§°ā§āĻā§āώāĻžā§° āĻāĻŋāĻĒāĻ : write: “This contradicts our assumption.” āϞāĻŋāĻāĻŋāĻŦāĻž: “āĻāĻāĻā§ āĻāĻŽāĻžā§° āϧāĻžā§°āĻŖāĻžā§° āϏā§āϤ⧠āĻŦāĻŋā§°ā§āϧ āϏā§āώā§āĻāĻŋ āĻā§°ā§āĨ¤”