Real Numbers Notes: āĻĒā§°āĻŋāĻŽā§‡āϝāĻŧ āϏāĻ‚āĻ–ā§āϝāĻž (rational number) &āĻ…āĻĒā§°āĻŋāĻŽā§‡āϝāĻŧ āϏāĻ‚āĻ–ā§āϝāĻž (irrational number)


Rational Number & Irrational Number


1. Rational Number -āĻĒā§°āĻŋāĻŽā§‡āϝāĻŧ āϏāĻ‚āĻ–ā§āϝāĻž


 Definition | āϏāĻ‚āĻœā§āĻžāĻž : A rational number is a number that can be written in the form p/q, where p and q are integers and q≠0. āϝāĻŋ āϏāĻ‚āĻ–ā§āϝāĻž p/q āφāĻ•āĻžā§°āϤ āϞāĻŋāĻ–āĻŋāĻŦ āĻĒāĻžā§°āĻŋ, āϝ’āϤ p āφ⧰⧁ q āĻĒā§‚ā§°ā§āĻŖāϏāĻ‚āĻ–ā§āϝāĻž āφ⧰⧁ q≠0, āϤāĻžāĻ• āĻĒā§°āĻŋāĻŽā§‡āϝāĻŧ āϏāĻ‚āĻ–ā§āϝāĻž āĻ•ā§‹ā§ąāĻž āĻšāϝāĻŧāĨ¤


Ex | āωāĻĻāĻžāĻšā§°āĻŖ : 1/2,  −3/4,  5,  0,  0.25


Properties | āϗ⧁āĻŖāĻ§ā§°ā§āĻŽ



  • Rational numbers can be terminating or recurring decimals. (āĻĒā§°āĻŋāĻŽā§‡āϝāĻŧ āϏāĻ‚āĻ–ā§āϝāĻž āĻļ⧇āώ āĻšā§‹ā§ąāĻž āĻŦāĻž āĻĒ⧁āύ⧰āĻžāĻŦ⧃āĻ¤ā§āϤ āĻĻāĻļāĻŽāĻŋāĻ• āĻš’āĻŦ āĻĒāĻžā§°ā§‡)

  • Sum, difference, and product of rational numbers are always rational. (āϝ⧋āĻ—, āĻŦāĻŋā§Ÿā§‹āĻ—, āϗ⧁āĻŖāĻĢāϞ āϏāĻĻāĻžāϝāĻŧ āĻĒā§°āĻŋāĻŽā§‡āϝāĻŧ)

  • Rational numbers can be represented on the number line. (āϏāĻ‚āĻ–ā§āϝāĻžā§°ā§‡āĻ–āĻžāϤ āĻĻ⧇āĻ–ā§ā§ąāĻžāĻŦ āĻĒāĻžā§°āĻŋ)


Uses | āĻŦā§āĻ¯ā§ąāĻšāĻžā§° : Used in daily life like money, measurement, time, distance. āĻĻ⧈āύāĻ¨ā§āĻĻāĻŋāύ āĻœā§€ā§ąāύāϤ āϧāύ, āĻŽāĻžāĻĒ, āϏāĻŽāϝāĻŧ, āĻĻā§‚ā§°āĻ¤ā§āĻŦ āφāĻĻāĻŋāϤ āĻŦā§āĻ¯ā§ąāĻšāĻžā§° āĻšāϝāĻŧāĨ¤


2. Irrational Number | āĻ…āĻĒā§°āĻŋāĻŽā§‡āϝāĻŧ āϏāĻ‚āĻ–ā§āϝāĻž


Definition - āϏāĻ‚āĻœā§āĻžāĻž: An irrational number is a number that cannot be written in the form p/q where p and q are integers. āϝāĻŋ āϏāĻ‚āĻ–ā§āϝāĻž p/q āφāĻ•āĻžā§°āϤ āϞāĻŋāĻ–āĻŋāĻŦ āĻ¨ā§‹ā§ąāĻžā§°āĻŋ, āϤāĻžāĻ• āĻ…āĻĒā§°āĻŋāĻŽā§‡āϝāĻŧ āϏāĻ‚āĻ–ā§āϝāĻž āĻ•ā§‹ā§ąāĻž āĻšāϝāĻŧāĨ¤


Ex- āωāĻĻāĻžāĻšā§°āĻŖ : √2,  √3,  √5,  π


Properties | āϗ⧁āĻŖāĻ§ā§°ā§āĻŽ



  • Irrational numbers have non-terminating, non-repeating decimals (āĻļ⧇āώ āύ⧋āĻšā§‹ā§ąāĻž āφ⧰⧁ āĻĒ⧁āύ⧰āĻžāĻŦ⧃āĻ¤ā§āϤ āύ⧋āĻšā§‹ā§ąāĻž āĻĻāĻļāĻŽāĻŋāĻ•)

  • Cannot be expressed as p/q , p/q āφāĻ•āĻžā§°āϤ āϞāĻŋāĻ–āĻŋāĻŦ āĻ¨ā§‹ā§ąāĻžā§°āĻŋ)

  • Sum of a rational and an irrational number is irrational (āĻĒā§°āĻŋāĻŽā§‡āϝāĻŧ + āĻ…āĻĒā§°āĻŋāĻŽā§‡āϝāĻŧ = āĻ…āĻĒā§°āĻŋāĻŽā§‡āϝāĻŧ)


Uses - āĻŦā§āĻ¯ā§ąāĻšāĻžā§° : Used in geometry, circle, square root, scientific calculations. āĻœā§āϝāĻžāĻŽāĻŋāϤāĻŋ, āĻŦ⧃āĻ¤ā§āϤ, āĻŦā§°ā§āĻ—āĻŽā§‚āϞ āφ⧰⧁ āĻŦāĻŋāĻœā§āĻžāĻžāύ⧀āϝāĻŧ āĻ—āĻŖāύāĻžāϤ āĻŦā§āĻ¯ā§ąāĻšāĻžā§° āĻšāϝāĻŧāĨ¤


3. Difference between Rational and Irrational Numbers (āĻĒā§°āĻŋāĻŽā§‡āϝāĻŧ āφ⧰⧁ āĻ…āĻĒā§°āĻŋāĻŽā§‡āϝāĻŧ āϏāĻ‚āĻ–ā§āϝāĻžā§° āĻĒāĻžā§°ā§āĻĨāĻ•ā§āϝ)


Rational Number (āĻĒā§°āĻŋāĻŽā§‡āϝāĻŧ āϏāĻ‚āĻ–ā§āϝāĻž)



  1. Can be written as p/q p/q āφāĻ•āĻžā§°āϤ āϞāĻŋāĻ–āĻŋāĻŦ āĻĒāĻžā§°āĻŋ, āϝ’āϤ p,q āĻĒā§‚ā§°ā§āĻŖāϏāĻ‚āĻ–ā§āϝāĻž āφ⧰⧁ q≠0āĨ¤

  2. Has terminating or recurring decimal : āĻĻāĻļāĻŽāĻŋāĻ• ā§°ā§‚āĻĒ āĻļ⧇āώ āĻšā§‹ā§ąāĻž (terminating) āĻŦāĻž āĻĒ⧁āύ⧰āĻžāĻŦ⧃āĻ¤ā§āϤ (recurring) āĻšāϝāĻŧāĨ¤

  3. Examples:1/2,  3,  0.5

  4. Used in daily calculations : āĻĻ⧈āύāĻ¨ā§āĻĻāĻŋāύ āĻ—āĻŖāύāĻž āϝ⧇āύ⧇ āϧāύ, āϏāĻŽāϝāĻŧ, āĻĻā§‚ā§°āĻ¤ā§āĻŦ āφāĻĻāĻŋāϤ āĻŦā§āĻ¯ā§ąāĻšāĻžā§° āĻšāϝāĻŧāĨ¤


Irrational Number (āĻ…āĻĒā§°āĻŋāĻŽā§‡āϝāĻŧ āϏāĻ‚āĻ–ā§āϝāĻž)



  1. Cannot be written as p/qp/q āφāĻ•āĻžā§°āϤ āϞāĻŋāĻ–āĻŋāĻŦ āĻ¨ā§‹ā§ąāĻžā§°āĻŋāĨ¤

  2. Has non-terminating, non-repeating decimal : āĻĻāĻļāĻŽāĻŋāĻ• ā§°ā§‚āĻĒ āĻļ⧇āώ āύāĻšāϝāĻŧ āφ⧰⧁ āĻĒ⧁āύ⧰āĻžāĻŦ⧃āĻ¤ā§āϤ āύāĻšāϝāĻŧāĨ¤

  3. Ex: √2,  √3,  π

  4. Used in geometry and science: āĻœā§āϝāĻžāĻŽāĻŋāϤāĻŋ āφ⧰⧁ āĻŦāĻŋāĻœā§āĻžāĻžāύ⧀āϝāĻŧ āĻ—āĻŖāύāĻžāϤ āĻŦā§āĻ¯ā§ąāĻšāĻžā§° āĻšāϝāĻŧāĨ¤


Exam Tip : āĻĒāĻžā§°ā§āĻĨāĻ•ā§āϝ āĻĒā§ā§°āĻļā§āύāϤ by point āĻŦāĻž table form āϞāĻŋāĻ–āĻŋāϞ⧇ āĻĒā§‚ā§°ā§āĻŖ āύāĻŽā§āĻŦā§° āĻĒā§‹ā§ąāĻž āϏāĻšāϜ āĻšāϝāĻŧ 


One-Line Memory Trick



  • Rational = Fraction possible, āĻĒā§°āĻŋāĻŽā§‡āϝāĻŧ = āĻ­āĻ—ā§āύāĻžāĻ‚āĻļāϤ āϞāĻŋāĻ–āĻŋāĻŦ āĻĒāĻžā§°āĻŋ

  • Irrational = Fraction not possible , āĻ…āĻĒā§°āĻŋāĻŽā§‡āϝāĻŧ = āĻ­āĻ—ā§āύāĻžāĻ‚āĻļāϤ āϞāĻŋāĻ–āĻŋāĻŦ āĻ¨ā§‹ā§ąāĻžā§°āĻŋ


āĻĒā§ā§°āĻļā§āύ.Q : āϝāĻĻāĻŋ 2+√3/5āĻāϟāĻž āĻ…āĻĒā§°āĻŋāĻŽā§‡āϝāĻŧ āϏāĻ‚āĻ–ā§āϝāĻž (irrational number) āĻšāϝāĻŧ, āϤ⧇āĻ¨ā§āϤ⧇ āĻĒā§ā§°āĻŽāĻžāĻŖ āϕ⧰āĻž āϝ⧇ āĻāϟāĻžāĻ“ āĻ…āĻĒā§°āĻŋāĻŽā§‡āϝāĻŧ āϏāĻ‚āĻ–ā§āϝāĻžāĨ¤


āϏāĻŽāĻžāϧāĻžāύ (Soln)


āϧ⧰āĻž āϝāĻžāĻ“āĻ•,


āĻāϟāĻž āĻĒā§°āĻŋāĻŽā§‡āϝāĻŧ āϏāĻ‚āĻ–ā§āϝāĻž (rational number)āĨ¤


āϝāĻŋāĻšā§‡āϤ⧁ 5 āĻāϟāĻž āĻĒā§°āĻŋāĻŽā§‡āϝāĻŧ āϏāĻ‚āĻ–ā§āϝāĻž, āϏ⧇āϝāĻŧ⧇āĻšā§‡ āĻĒā§°āĻŋāĻŽā§‡āϝāĻŧ āϏāĻ‚āĻ–ā§āϝāĻžā§° āϏ⧈āϤ⧇ āĻĒā§°āĻŋāĻŽā§‡āϝāĻŧ āϏāĻ‚āĻ–ā§āϝāĻžā§° āϗ⧁āĻŖāĻĢāϞ āϏāĻĻāĻžāϝāĻŧ āĻĒā§°āĻŋāĻŽā§‡āϝāĻŧ āĻšāϝāĻŧāĨ¤


āĻ…āϤ āĻāĻŦ, 5 x 


āĻ…ā§°ā§āĻĨāĻžā§Ž, āĻāϟāĻž āĻĒā§°āĻŋāĻŽā§‡āϝāĻŧ āϏāĻ‚āĻ–ā§āϝāĻžāĨ¤


āφāĻŽāĻŋ āϜāĻžāύ⧋ āϝ⧇ 2 āĻāϟāĻž āĻĒā§°āĻŋāĻŽā§‡āϝāĻŧ āϏāĻ‚āĻ–ā§āϝāĻžāĨ¤ āĻĒā§°āĻŋāĻŽā§‡āϝāĻŧ āϏāĻ‚āĻ–ā§āϝāĻžā§° āĻĒā§°āĻž āĻĒā§°āĻŋāĻŽā§‡āϝāĻŧ āϏāĻ‚āĻ–ā§āϝāĻž āĻŦāĻŋā§Ÿā§‹āĻ— āϕ⧰āĻŋāϞ⧇ āĻĢāϞāĻžāĻĢāϞ āϏāĻĻāĻžāϝāĻŧ āĻĒā§°āĻŋāĻŽā§‡āϝāĻŧ āĻšāϝāĻŧāĨ¤


āϏ⧇āϝāĻŧ⧇āĻšā§‡,


āĻ•āĻŋāĻ¨ā§āϤ⧁, āĻāϟāĻž āĻ…āĻĒā§°āĻŋāĻŽā§‡āϝāĻŧ āϏāĻ‚āĻ–ā§āϝāĻžāĨ¤


āĻāχāĻŸā§‹ āφāĻŽāĻžā§° āϧāĻžā§°āĻŖāĻžā§° āϏ⧈āϤ⧇ āĻŦāĻŋā§°ā§‹āϧ (contradiction) āϏ⧃āĻˇā§āϟāĻŋ āϕ⧰⧇āĨ¤


āϏ⧇āϝāĻŧ⧇ āϧāĻžā§°āĻŖāĻžāĻŸā§‹ āϭ⧁āϞāĨ¤


āĻ…āϤāĻāĻŦ,


āϏāĻŋāĻĻā§āϧāĻžāĻ¨ā§āϤ (Conclusion) : āĻĒā§ā§°āĻŽāĻžāĻŖāĻŋāϤ āĻš’āϞ āϝ⧇  āĻāϟāĻž āĻ…āĻĒā§°āĻŋāĻŽā§‡āϝāĻŧ āϏāĻ‚āĻ–ā§āϝāĻžāĨ¤


Exam Tip (āϗ⧁āϰ⧁āĻ¤ā§āĻŦāĻĒā§‚ā§°ā§āĻŖ): āĻāχāĻŸā§‹ āĻāϟāĻž contradiction method-ā§° āĻĒā§ā§°āĻļā§āύāĨ¤ āĻļ⧇āώāϤ āϏāĻĻāĻžāϝāĻŧ āĻāχ āĻŦāĻžāĻ•ā§āϝāĻŸā§‹ āϞāĻŋāĻ–āĻŋāĻŦāĻž —
“āĻāχāĻŸā§‹ āφāĻŽāĻžā§° āϧāĻžā§°āĻŖāĻžā§° āϏ⧈āϤ⧇ āĻŦāĻŋā§°ā§‹āϧ āϏ⧃āĻˇā§āϟāĻŋ āϕ⧰⧇āĨ¤”


Q - āĻĒā§ā§°āĻļā§āύ : Prove that 5​ is an irrational number. āĻĒā§ā§°āĻŽāĻžāĻŖ āϕ⧰āĻž āϝ⧇ 5\sqrt{5} āĻāϟāĻž āĻ…āĻĒā§°āĻŋāĻŽā§‡āϝāĻŧ āϏāĻ‚āĻ–ā§āϝāĻžāĨ¤


āϏāĻŽāĻžāϧāĻžāύ (Soln)


Let us assume that √5 is a rational number. āϧ⧰āĻž āϝāĻžāĻ“āĻ•, √5 āĻāϟāĻž āĻĒā§°āĻŋāĻŽā§‡āϝāĻŧ āϏāĻ‚āĻ–ā§āϝāĻžāĨ¤


5


where p and q are co-prime integers and q ≠ 0
āϝ’āϤ p āφ⧰⧁ q āϏāĻšāĻŽāĻŋāϤāĻŋāĻšā§€āύ āĻĒā§‚ā§°ā§āĻŖāϏāĻ‚āĻ–ā§āϝāĻž āφ⧰⧁ q ≠ 0āĨ¤


Squaring both sides, āωāĻ­āϝāĻŧ āĻĢāĻžāϞ āĻ¸ā§āĻ•ā§ā§ąā§‡āϝāĻŧāĻžā§° āϕ⧰āĻŋāϞ⧇,


                                5=p2/q2p2 = 5q2


So, p2 is divisible by 5, hence p is divisible by 5.


āχāϝāĻŧāĻžāϤ p2 5-⧰⧇ āĻŦāĻŋāĻ­āĻžāĻœā§āϝ, āϏ⧇āϝāĻŧ⧇āĻšā§‡ p 5-⧰⧇ āĻŦāĻŋāĻ­āĻžāĻœā§āϝāĨ¤


Let p = 5k
āϧ⧰āĻž āϝāĻžāĻ“āĻ• p = 5kāĨ¤


 (5k)2 = 5q2 q2 = 5k2


Thus, q is also divisible by 5.
āχāϝāĻŧāĻžā§° āĻĒā§°āĻž q āĻ“ 5-⧰⧇ āĻŦāĻŋāĻ­āĻžāĻœā§āϝāĨ¤


This contradicts our assumption that pp and qq are co-prime.
āĻāχāĻŸā§‹ āφāĻŽāĻžā§° āϧāĻžā§°āĻŖāĻžā§° āϏ⧈āϤ⧇ āĻŦāĻŋā§°ā§‹āϧ āϏ⧃āĻˇā§āϟāĻŋ āϕ⧰⧇āĨ¤


Hence, the assumption is wrong. āϏ⧇āϝāĻŧ⧇ āϧāĻžā§°āĻŖāĻžāĻŸā§‹ āϭ⧁āϞāĨ¤


Conclusion - āϏāĻŋāĻĻā§āϧāĻžāĻ¨ā§āϤ


Therefore, 5 is an irrational number. āĻ…āϤāĻāĻŦ, 5 āĻāϟāĻž āĻ…āĻĒā§°āĻŋāĻŽā§‡āϝāĻŧ āϏāĻ‚āĻ–ā§āϝāĻžāĨ¤


Exam Tip - āĻĒā§°ā§€āĻ•ā§āώāĻžā§° āϟāĻŋāĻĒāĻ›write: “This contradicts our assumption.” āϞāĻŋāĻ–āĻŋāĻŦāĻž: “āĻāχāĻŸā§‹ āφāĻŽāĻžā§° āϧāĻžā§°āĻŖāĻžā§° āϏ⧈āϤ⧇ āĻŦāĻŋā§°ā§‹āϧ āϏ⧃āĻˇā§āϟāĻŋ āϕ⧰⧇āĨ¤”