Arithmetic Progressions : āĻ—āĻžāĻŖāĻŋāϤāĻŋāĻ• āϧāĻžāϰāĻž – Part 1) : āĻĒā§°āĻŋāϚāϝāĻŧ


What is an Arithmetic Progression (AP) āĻ—āĻžāĻŖāĻŋāϤāĻŋāĻ• āϧāĻžāϰāĻž ?


A sequence of numbers in which the difference between any two consecutive terms is constant. This constant difference is called the common difference, denoted by ‘d’. āϝāĻŋ āϏāĻ‚āĻ–ā§āϝāĻžā§° āϧāĻžā§°āĻžāϤ āĻĒā§°āĻ¸ā§āĻĒā§° āϞāĻžāĻ—āĻŋ āĻĨāĻ•āĻž āĻĻ⧁āϟāĻž āĻĒāĻĻā§° āĻŽāĻžāϜ⧰ āĻĒāĻžā§°ā§āĻĨāĻ•ā§āϝ āϏāĻĻāĻžāϝāĻŧ āĻāϕ⧇ āĻĨāĻžāϕ⧇, āϤāĻžāĻ• āĻ—āĻžāĻŖāĻŋāϤāĻŋāĻ• āϧāĻžāϰāĻž (AP) āĻŦ⧁āϞāĻŋ āĻ•ā§‹ā§ąāĻž āĻšāϝāĻŧāĨ¤ āĻāχ āĻ¸ā§āĻĨāĻŋā§° āĻĒāĻžā§°ā§āĻĨāĻ•ā§āϝāĻ• āϏāĻžāϧāĻžā§°āĻŖ āĻĒāĻžā§°ā§āĻĨāĻ•ā§āϝ (common difference) āĻŦ⧁āϞāĻŋ āĻ•ā§‹ā§ąāĻž āĻšāϝāĻŧ āφ⧰⧁ āχāϝāĻŧāĻžāĻ• **‘d’**⧰⧇ āĻĒā§ā§°āĻ•āĻžāĻļ āϕ⧰āĻž āĻšāϝāĻŧāĨ¤


Terms of an AP (AP-ā§° āĻĒāĻĻāϏāĻŽā§‚āĻš)



  • The first term is denoted by ‘a’. : āĻĒā§ā§°āĻĨāĻŽ āĻĒāĻĻāĻ• **‘a’**⧰⧇ āϏ⧂āĻšā§‹ā§ąāĻž āĻšāϝāĻŧāĨ¤

  • The common difference is ‘d’. : āϏāĻžāϧāĻžā§°āĻŖ āĻĒāĻžā§°ā§āĻĨāĻ•ā§āϝāĻ• **‘d’**⧰⧇ āϏ⧂āĻšā§‹ā§ąāĻž āĻšāϝāĻŧāĨ¤


General Form of an AP : AP-ā§° āϏāĻžāϧāĻžā§°āĻŖ ā§°ā§‚āĻĒ āĻšā§ˆāϛ⧇ –


a, a+d, a+2d, a+3d, ...


Ex : 1. Sequence: 2, 5, 8, 11, 14,...


First term : āĻĒā§ā§°āĻĨāĻŽ āĻĒāĻĻ, a = 2
Common difference, āϏāĻžāϧāĻžā§°āĻŖ āĻĒāĻžā§°ā§āĻĨāĻ•ā§āϝ, d = 5 - 2 = 3, 8 - 5 = 3, etc
So, āϏ⧇āϝāĻŧ⧇,  d = 3


Ex : 2. Sequence: 10, 7, 4, 1, -2,...


First term, āĻĒā§ā§°āĻĨāĻŽ āĻĒāĻĻ, a = 10
Common difference, āϏāĻžāϧāĻžā§°āĻŖ āĻĒāĻžā§°ā§āĻĨāĻ•ā§āϝ, d = 7 - 10 = -3, 4 - 7 = -3
So, āϏ⧇āϝāĻŧ⧇, d = -3


Note / āĻŸā§‹āĻ•āĻž


The common difference (d) can be positive, negative, or zero. āϏāĻžāϧāĻžā§°āĻŖ āĻĒāĻžā§°ā§āĻĨāĻ•ā§āϝ (d) āϧāύāĻžāĻ¤ā§āĻŽāĻ•, āĻ‹āĻŖāĻžāĻ¤ā§āĻŽāĻ• āĻ…āĻĨāĻŦāĻž āĻļā§‚āĻ¨ā§āϝ āĻš’āĻŦ āĻĒāĻžā§°ā§‡āĨ¤


Finite and Infinite AP


Finite AP : Has a limited number of terms. āϏ⧀āĻŽāĻŋāϤ āϏāĻ‚āĻ–ā§āϝāĻ• āĻĒāĻĻ āĻĨāĻžāϕ⧇ (Ex:āωāĻĻāĻžāĻšā§°āĻŖ : 1, 3, 5, 7 )


Infinite AP : Has an unlimited number of terms. āĻ…āϏ⧀āĻŽ āϏāĻ‚āĻ–ā§āϝāĻ• āĻĒāĻĻ āĻĨāĻžāϕ⧇āĨ¤ āωāĻĻāĻžāĻšā§°āĻŖ Ex: 1, 3, 5, 7,...


Q 3. What is an Arithmetic Progression (AP) ? / āĻ—āĻžāĻŖāĻŋāϤāĻŋāĻ• āϧāĻžāϰāĻž (AP) āĻ•āĻŋ ?
A) A sequence with unequal differences / āĻ…āϏāĻŽ āĻĒāĻžā§°ā§āĻĨāĻ•ā§āϝ āĻĨāĻ•āĻž āϧāĻžāϰāĻž  B) A sequence where consecutive terms have a constant difference / āϝ’āϤ āϞāĻžāĻ—āĻŋ āĻĨāĻ•āĻž āĻĒāĻĻāϏāĻŽā§‚āĻšā§° āĻĒāĻžā§°ā§āĻĨāĻ•ā§āϝ āĻ¸ā§āĻĨāĻŋā§° āĻĨāĻžāϕ⧇  C) A sequence of random numbers / āĻāϞ⧋āĻŽā§‡āϞ⧋ āϏāĻ‚āĻ–ā§āϝāĻžā§° āϧāĻžāϰāĻž  D) A sequence with multiplying terms / āϗ⧁āĻŖ āϕ⧰āĻŋ āĻŦāĻĸāĻŧāĻž āϧāĻžāϰāĻž


Ans: B) A sequence where consecutive terms have a constant difference / āϝ’āϤ āϞāĻžāĻ—āĻŋ āĻĨāĻ•āĻž āĻĒāĻĻāϏāĻŽā§‚āĻšā§° āĻĒāĻžā§°ā§āĻĨāĻ•ā§āϝ āĻ¸ā§āĻĨāĻŋā§° āĻĨāĻžāϕ⧇
Explanation: The fixed difference is called the common difference (d). / āĻāχ āĻ¸ā§āĻĨāĻŋā§° āĻĒāĻžā§°ā§āĻĨāĻ•ā§āϝāĻ• āϏāĻžāϧāĻžā§°āĻŖ āĻĒāĻžā§°ā§āĻĨāĻ•ā§āϝ (d) āĻŦ⧁āϞāĻŋ āĻ•ā§‹ā§ąāĻž āĻšāϝāĻŧāĨ¤


Q 4. What is the common difference ? / āϏāĻžāϧāĻžā§°āĻŖ āĻĒāĻžā§°ā§āĻĨāĻ•ā§āϝ āĻ•āĻŋ ?
A) Sum of terms / āĻĒāĻĻāϏāĻŽā§‚āĻšā§° āϝ⧋āĻ—āĻĢāϞ  B) Product of terms / āĻĒāĻĻāϏāĻŽā§‚āĻšā§° āϗ⧁āĻŖāĻĢāϞ  C) Difference between consecutive terms / āĻĒā§°āĻ¸ā§āĻĒā§° āϞāĻžāĻ—āĻŋ āĻĨāĻ•āĻž āĻĒāĻĻā§° āĻĒāĻžā§°ā§āĻĨāĻ•ā§āϝ  D) Last term / āĻļ⧇āώ āĻĒāĻĻ


Ans: C) Difference between consecutive terms / āĻĒā§°āĻ¸ā§āĻĒā§° āϞāĻžāĻ—āĻŋ āĻĨāĻ•āĻž āĻĒāĻĻā§° āĻĒāĻžā§°ā§āĻĨāĻ•ā§āϝ
Explanation: It is the constant gap between two terms. / āχ āĻĻ⧁āϟāĻž āĻĒāĻĻā§° āĻŽāĻžāϜ⧰ āĻ¸ā§āĻĨāĻŋā§° āĻĒāĻžā§°ā§āĻĨāĻ•ā§āϝāĨ¤


Q 5. Which letter denotes the first term of an AP ? / AP-ā§° āĻĒā§ā§°āĻĨāĻŽ āĻĒāĻĻ āϕ⧋āύāĻŸā§‹ āφāϖ⧰⧇⧰⧇ āϏ⧂āĻšā§‹ā§ąāĻž āĻšāϝāĻŧ ?
A) d  B) n  C) a  D) x


Ans: C) a
Explanation: The first term is always represented by a. / āĻĒā§ā§°āĻĨāĻŽ āĻĒāĻĻ āϏāĻĻāĻžāϝāĻŧ a⧰⧇ āĻĒā§ā§°āĻ•āĻžāĻļ āϕ⧰āĻž āĻšāϝāĻŧāĨ¤


Q 6. Which letter represents the common difference? / āϏāĻžāϧāĻžā§°āĻŖ āĻĒāĻžā§°ā§āĻĨāĻ•ā§āϝ āϕ⧋āύāĻŸā§‹ āφāϖ⧰⧇⧰⧇ āĻĒā§ā§°āĻ•āĻžāĻļ āϕ⧰āĻž āĻšāϝāĻŧ?
A) a  B) d  C) t  D) m


Ans: B) d
Explanation: The common difference is denoted by d. / āϏāĻžāϧāĻžā§°āĻŖ āĻĒāĻžā§°ā§āĻĨāĻ•ā§āϝ d⧰⧇ āϏ⧂āĻšā§‹ā§ąāĻž āĻšāϝāĻŧāĨ¤


Q 7. What is the general form of an AP ? / AP-ā§° āϏāĻžāϧāĻžā§°āĻŖ ā§°ā§‚āĻĒ āĻ•āĻŋ ?
A) a, a², a³  B) a, a+d, a+2d, a+3d,...  C) a, ad, ad²  D) a, 2a, 4a


Ans: B) a, a+d, a+2d, a+3d,...
Explanation: Each term is formed by adding d to the previous term. / āĻĒā§ā§°āϤāĻŋāĻŸā§‹ āĻĒāĻĻ āφāĻ—ā§° āĻĒāĻĻāϤ d āϝ⧋āĻ— āϕ⧰āĻŋ āĻĒā§‹ā§ąāĻž āϝāĻžāϝāĻŧāĨ¤


Q 8. Find the common difference of 2, 5, 8, 11, 14. / 2, 5, 8, 11, 14 ā§° āϏāĻžāϧāĻžā§°āĻŖ āĻĒāĻžā§°ā§āĻĨāĻ•ā§āϝ āĻŦāĻŋāϚāĻžā§°āĻ•āĨ¤
A) 2  B) 3  C) 4  D) 5


Ans: B) 3
Explanation: 5 − 2 = 3 and 8 − 5 = 3. / 5 − 2 = 3 āφ⧰⧁ 8 − 5 = 3āĨ¤


Q 9. Find the common difference of 10, 7, 4, 1, -2. / 10, 7, 4, 1, -2 ā§° āϏāĻžāϧāĻžā§°āĻŖ āĻĒāĻžā§°ā§āĻĨāĻ•ā§āϝ āĻ•āĻŋāĻŽāĻžāύ ?
A) -2  B) -3  C) 3  D) 0


Ans: B) -3
Explanation: 7 − 10 = -3, so the sequence decreases. / 7 − 10 = -3, āϏ⧇āϝāĻŧ⧇ āϧāĻžā§°āĻžāĻŸā§‹ āĻšā§ā§°āĻžāϏ āĻĒāĻžāχāϛ⧇āĨ¤


Q 10. The common difference (d) can be: / āϏāĻžāϧāĻžā§°āĻŖ āĻĒāĻžā§°ā§āĻĨāĻ•ā§āϝ (d) āϕ⧇āύ⧇āĻ•ā§ā§ąāĻž āĻš’āĻŦ āĻĒāĻžā§°ā§‡ ?
A) Only positive / āĻ•ā§‡ā§ąāϞ āϧāύāĻžāĻ¤ā§āĻŽāĻ•  B) Only negative / āĻ•ā§‡ā§ąāϞ āĻ‹āĻŖāĻžāĻ¤ā§āĻŽāĻ•  C) Only zero / āĻ•ā§‡ā§ąāϞ āĻļā§‚āĻ¨ā§āϝ  D) Positive, negative, or zero / āϧāύāĻžāĻ¤ā§āĻŽāĻ•, āĻ‹āĻŖāĻžāĻ¤ā§āĻŽāĻ• āĻ…āĻĨāĻŦāĻž āĻļā§‚āĻ¨ā§āϝ


Ans: D) Positive, negative, or zero / āϧāύāĻžāĻ¤ā§āĻŽāĻ•, āĻ‹āĻŖāĻžāĻ¤ā§āĻŽāĻ• āĻ…āĻĨāĻŦāĻž āĻļā§‚āĻ¨ā§āϝ
Explanation: It depends on whether the sequence increases, decreases, or remains constant. / āϧāĻžā§°āĻž āĻŦāĻžāĻĸāĻŧ⧇, āĻ•āĻŽā§‡ āĻŦāĻž āĻāϕ⧇ āĻĨāĻžāĻ•āĻŋāϞ⧇ āϤāĻžā§° āĻ“āĻĒā§°āϤ āύāĻŋā§°ā§āĻ­ā§° āϕ⧰⧇āĨ¤


Q 11. Which of the following is a finite AP ? / āϤāϞ⧰ āϕ⧋āύāĻŸā§‹ āϏāϏ⧀āĻŽ AP ?
A) 1, 3, 5, 7  B) 2, 4, 6, 8,...  C) 5, 10, 15,...  D) 1, 2, 3,...


Ans: A) 1, 3, 5, 7
Explanation: A finite AP has a limited number of terms. / āϏāϏ⧀āĻŽ AP-āϤ āϏ⧀āĻŽāĻŋāϤ āϏāĻ‚āĻ–ā§āϝāĻ• āĻĒāĻĻ āĻĨāĻžāϕ⧇āĨ¤


Q 12. Which is an infinite AP ? / āϕ⧋āύāĻŸā§‹ āĻ…āϏ⧀āĻŽ AP ?
A) 4, 8, 12  B) 1, 3, 5, 7,...  C) 6, 9, 12  D) 10, 20


Ans: B) 1, 3, 5, 7,...


Explanation: The dots (…) indicate the sequence continues forever. / “...” āϚāĻŋāĻšā§āύ⧇ āϧāĻžā§°āĻžāĻŸā§‹ āĻ…āĻŦāĻŋā§°āϤ āϚāϞāĻŋ āĻĨāĻ•āĻžā§° āϏāĻ‚āϕ⧇āϤ āĻĻāĻŋāϝāĻŧ⧇āĨ¤