Arithmetic Progressions : āĻāĻžāĻŖāĻŋāϤāĻŋāĻ āϧāĻžāϰāĻž â Part 1) : āĻĒā§°āĻŋāĻāϝāĻŧ
What is an Arithmetic Progression (AP) āĻāĻžāĻŖāĻŋāϤāĻŋāĻ āϧāĻžāϰāĻž ?
A sequence of numbers in which the difference between any two consecutive terms is constant. This constant difference is called the common difference, denoted by ‘d’. āϝāĻŋ āϏāĻāĻā§āϝāĻžā§° āϧāĻžā§°āĻžāϤ āĻĒā§°āϏā§āĻĒā§° āϞāĻžāĻāĻŋ āĻĨāĻāĻž āĻĻā§āĻāĻž āĻĒāĻĻā§° āĻŽāĻžāĻā§° āĻĒāĻžā§°ā§āĻĨāĻā§āϝ āϏāĻĻāĻžāϝāĻŧ āĻāĻā§ āĻĨāĻžāĻā§, āϤāĻžāĻ āĻāĻžāĻŖāĻŋāϤāĻŋāĻ āϧāĻžāϰāĻž (AP) āĻŦā§āϞāĻŋ āĻā§ā§ąāĻž āĻšāϝāĻŧāĨ¤ āĻāĻ āϏā§āĻĨāĻŋā§° āĻĒāĻžā§°ā§āĻĨāĻā§āϝāĻ āϏāĻžāϧāĻžā§°āĻŖ āĻĒāĻžā§°ā§āĻĨāĻā§āϝ (common difference) āĻŦā§āϞāĻŋ āĻā§ā§ąāĻž āĻšāϝāĻŧ āĻā§°ā§ āĻāϝāĻŧāĻžāĻ **‘d’**ā§°ā§ āĻĒā§ā§°āĻāĻžāĻļ āĻā§°āĻž āĻšāϝāĻŧāĨ¤
Terms of an AP (AP-ā§° āĻĒāĻĻāϏāĻŽā§āĻš)
- The first term is denoted by ‘a’. : āĻĒā§ā§°āĻĨāĻŽ āĻĒāĻĻāĻ **‘a’**ā§°ā§ āϏā§āĻā§ā§ąāĻž āĻšāϝāĻŧāĨ¤
- The common difference is ‘d’. : āϏāĻžāϧāĻžā§°āĻŖ āĻĒāĻžā§°ā§āĻĨāĻā§āϝāĻ **‘d’**ā§°ā§ āϏā§āĻā§ā§ąāĻž āĻšāϝāĻŧāĨ¤
General Form of an AP : AP-ā§° āϏāĻžāϧāĻžā§°āĻŖ ā§°ā§āĻĒ āĻšā§āĻā§ –
a, a+d, a+2d, a+3d, ...
Ex : 1. Sequence: 2, 5, 8, 11, 14,...
First term : āĻĒā§ā§°āĻĨāĻŽ āĻĒāĻĻ, a = 2
Common difference, āϏāĻžāϧāĻžā§°āĻŖ āĻĒāĻžā§°ā§āĻĨāĻā§āϝ, d = 5 - 2 = 3, 8 - 5 = 3, etc
So, āϏā§āϝāĻŧā§, d = 3
Ex : 2. Sequence: 10, 7, 4, 1, -2,...
First term, āĻĒā§ā§°āĻĨāĻŽ āĻĒāĻĻ, a = 10
Common difference, āϏāĻžāϧāĻžā§°āĻŖ āĻĒāĻžā§°ā§āĻĨāĻā§āϝ, d = 7 - 10 = -3, 4 - 7 = -3
So, āϏā§āϝāĻŧā§, d = -3
Note / āĻā§āĻāĻž
The common difference (d) can be positive, negative, or zero. āϏāĻžāϧāĻžā§°āĻŖ āĻĒāĻžā§°ā§āĻĨāĻā§āϝ (d) āϧāύāĻžāϤā§āĻŽāĻ, āĻāĻŖāĻžāϤā§āĻŽāĻ āĻ āĻĨāĻŦāĻž āĻļā§āύā§āϝ āĻš’āĻŦ āĻĒāĻžā§°ā§āĨ¤
Finite and Infinite AP
Finite AP : Has a limited number of terms. āϏā§āĻŽāĻŋāϤ āϏāĻāĻā§āϝāĻ āĻĒāĻĻ āĻĨāĻžāĻā§ (Ex:āĻāĻĻāĻžāĻšā§°āĻŖ : 1, 3, 5, 7 )
Infinite AP : Has an unlimited number of terms. āĻ āϏā§āĻŽ āϏāĻāĻā§āϝāĻ āĻĒāĻĻ āĻĨāĻžāĻā§āĨ¤ āĻāĻĻāĻžāĻšā§°āĻŖ Ex: 1, 3, 5, 7,...
Q 3. What is an Arithmetic Progression (AP) ? / āĻāĻžāĻŖāĻŋāϤāĻŋāĻ āϧāĻžāϰāĻž (AP) āĻāĻŋ ?
A) A sequence with unequal differences / āĻ
āϏāĻŽ āĻĒāĻžā§°ā§āĻĨāĻā§āϝ āĻĨāĻāĻž āϧāĻžāϰāĻž B) A sequence where consecutive terms have a constant difference / āϝ’āϤ āϞāĻžāĻāĻŋ āĻĨāĻāĻž āĻĒāĻĻāϏāĻŽā§āĻšā§° āĻĒāĻžā§°ā§āĻĨāĻā§āϝ āϏā§āĻĨāĻŋā§° āĻĨāĻžāĻā§ C) A sequence of random numbers / āĻāϞā§āĻŽā§āϞ⧠āϏāĻāĻā§āϝāĻžā§° āϧāĻžāϰāĻž D) A sequence with multiplying terms / āĻā§āĻŖ āĻā§°āĻŋ āĻŦāĻĸāĻŧāĻž āϧāĻžāϰāĻž
Ans: B) A sequence where consecutive terms have a constant difference / āϝ’āϤ āϞāĻžāĻāĻŋ āĻĨāĻāĻž āĻĒāĻĻāϏāĻŽā§āĻšā§° āĻĒāĻžā§°ā§āĻĨāĻā§āϝ āϏā§āĻĨāĻŋā§° āĻĨāĻžāĻā§
Explanation: The fixed difference is called the common difference (d). / āĻāĻ āϏā§āĻĨāĻŋā§° āĻĒāĻžā§°ā§āĻĨāĻā§āϝāĻ āϏāĻžāϧāĻžā§°āĻŖ āĻĒāĻžā§°ā§āĻĨāĻā§āϝ (d) āĻŦā§āϞāĻŋ āĻā§ā§ąāĻž āĻšāϝāĻŧāĨ¤
Q 4. What is the common difference ? / āϏāĻžāϧāĻžā§°āĻŖ āĻĒāĻžā§°ā§āĻĨāĻā§āϝ āĻāĻŋ ?
A) Sum of terms / āĻĒāĻĻāϏāĻŽā§āĻšā§° āϝā§āĻāĻĢāϞ B) Product of terms / āĻĒāĻĻāϏāĻŽā§āĻšā§° āĻā§āĻŖāĻĢāϞ C) Difference between consecutive terms / āĻĒā§°āϏā§āĻĒā§° āϞāĻžāĻāĻŋ āĻĨāĻāĻž āĻĒāĻĻā§° āĻĒāĻžā§°ā§āĻĨāĻā§āϝ D) Last term / āĻļā§āώ āĻĒāĻĻ
Ans: C) Difference between consecutive terms / āĻĒā§°āϏā§āĻĒā§° āϞāĻžāĻāĻŋ āĻĨāĻāĻž āĻĒāĻĻā§° āĻĒāĻžā§°ā§āĻĨāĻā§āϝ
Explanation: It is the constant gap between two terms. / āĻ āĻĻā§āĻāĻž āĻĒāĻĻā§° āĻŽāĻžāĻā§° āϏā§āĻĨāĻŋā§° āĻĒāĻžā§°ā§āĻĨāĻā§āϝāĨ¤
Q 5. Which letter denotes the first term of an AP ? / AP-ā§° āĻĒā§ā§°āĻĨāĻŽ āĻĒāĻĻ āĻā§āύāĻā§ āĻāĻā§°ā§ā§°ā§ āϏā§āĻā§ā§ąāĻž āĻšāϝāĻŧ ?
A) d B) n C) a D) x
Ans: C) a
Explanation: The first term is always represented by a. / āĻĒā§ā§°āĻĨāĻŽ āĻĒāĻĻ āϏāĻĻāĻžāϝāĻŧ aā§°ā§ āĻĒā§ā§°āĻāĻžāĻļ āĻā§°āĻž āĻšāϝāĻŧāĨ¤
Q 6. Which letter represents the common difference? / āϏāĻžāϧāĻžā§°āĻŖ āĻĒāĻžā§°ā§āĻĨāĻā§āϝ āĻā§āύāĻā§ āĻāĻā§°ā§ā§°ā§ āĻĒā§ā§°āĻāĻžāĻļ āĻā§°āĻž āĻšāϝāĻŧ?
A) a B) d C) t D) m
Ans: B) d
Explanation: The common difference is denoted by d. / āϏāĻžāϧāĻžā§°āĻŖ āĻĒāĻžā§°ā§āĻĨāĻā§āϝ dā§°ā§ āϏā§āĻā§ā§ąāĻž āĻšāϝāĻŧāĨ¤
Q 7. What is the general form of an AP ? / AP-ā§° āϏāĻžāϧāĻžā§°āĻŖ ā§°ā§āĻĒ āĻāĻŋ ?
A) a, a², a³ B) a, a+d, a+2d, a+3d,... C) a, ad, ad² D) a, 2a, 4a
Ans: B) a, a+d, a+2d, a+3d,...
Explanation: Each term is formed by adding d to the previous term. / āĻĒā§ā§°āϤāĻŋāĻā§ āĻĒāĻĻ āĻāĻā§° āĻĒāĻĻāϤ d āϝā§āĻ āĻā§°āĻŋ āĻĒā§ā§ąāĻž āϝāĻžāϝāĻŧāĨ¤
Q 8. Find the common difference of 2, 5, 8, 11, 14. / 2, 5, 8, 11, 14 ā§° āϏāĻžāϧāĻžā§°āĻŖ āĻĒāĻžā§°ā§āĻĨāĻā§āϝ āĻŦāĻŋāĻāĻžā§°āĻāĨ¤
A) 2 B) 3 C) 4 D) 5
Ans: B) 3
Explanation: 5 − 2 = 3 and 8 − 5 = 3. / 5 − 2 = 3 āĻā§°ā§ 8 − 5 = 3āĨ¤
Q 9. Find the common difference of 10, 7, 4, 1, -2. / 10, 7, 4, 1, -2 ā§° āϏāĻžāϧāĻžā§°āĻŖ āĻĒāĻžā§°ā§āĻĨāĻā§āϝ āĻāĻŋāĻŽāĻžāύ ?
A) -2 B) -3 C) 3 D) 0
Ans: B) -3
Explanation: 7 − 10 = -3, so the sequence decreases. / 7 − 10 = -3, āϏā§āϝāĻŧā§ āϧāĻžā§°āĻžāĻā§ āĻšā§ā§°āĻžāϏ āĻĒāĻžāĻāĻā§āĨ¤
Q 10. The common difference (d) can be: / āϏāĻžāϧāĻžā§°āĻŖ āĻĒāĻžā§°ā§āĻĨāĻā§āϝ (d) āĻā§āύā§āĻā§ā§ąāĻž āĻš’āĻŦ āĻĒāĻžā§°ā§ ?
A) Only positive / āĻā§ā§ąāϞ āϧāύāĻžāϤā§āĻŽāĻ B) Only negative / āĻā§ā§ąāϞ āĻāĻŖāĻžāϤā§āĻŽāĻ C) Only zero / āĻā§ā§ąāϞ āĻļā§āύā§āϝ D) Positive, negative, or zero / āϧāύāĻžāϤā§āĻŽāĻ, āĻāĻŖāĻžāϤā§āĻŽāĻ āĻ
āĻĨāĻŦāĻž āĻļā§āύā§āϝ
Ans: D) Positive, negative, or zero / āϧāύāĻžāϤā§āĻŽāĻ, āĻāĻŖāĻžāϤā§āĻŽāĻ āĻ
āĻĨāĻŦāĻž āĻļā§āύā§āϝ
Explanation: It depends on whether the sequence increases, decreases, or remains constant. / āϧāĻžā§°āĻž āĻŦāĻžāĻĸāĻŧā§, āĻāĻŽā§ āĻŦāĻž āĻāĻā§ āĻĨāĻžāĻāĻŋāϞ⧠āϤāĻžā§° āĻāĻĒā§°āϤ āύāĻŋā§°ā§āĻā§° āĻā§°ā§āĨ¤
Q 11. Which of the following is a finite AP ? / āϤāϞ⧰ āĻā§āύāĻā§ āϏāϏā§āĻŽ AP ?
A) 1, 3, 5, 7 B) 2, 4, 6, 8,... C) 5, 10, 15,... D) 1, 2, 3,...
Ans: A) 1, 3, 5, 7
Explanation: A finite AP has a limited number of terms. / āϏāϏā§āĻŽ AP-āϤ āϏā§āĻŽāĻŋāϤ āϏāĻāĻā§āϝāĻ āĻĒāĻĻ āĻĨāĻžāĻā§āĨ¤
Q 12. Which is an infinite AP ? / āĻā§āύāĻā§ āĻ
āϏā§āĻŽ AP ?
A) 4, 8, 12 B) 1, 3, 5, 7,... C) 6, 9, 12 D) 10, 20
Ans: B) 1, 3, 5, 7,...
Explanation: The dots (…) indicate the sequence continues forever. / “...” āĻāĻŋāĻšā§āύ⧠āϧāĻžā§°āĻžāĻā§ āĻ āĻŦāĻŋā§°āϤ āĻāϞāĻŋ āĻĨāĻāĻžā§° āϏāĻāĻā§āϤ āĻĻāĻŋāϝāĻŧā§āĨ¤